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A Theoretical Framework for 
Equity-Defensive Strategies 
Baz et al. (2017) note that investors have come to accept four general 
approaches to diversifying and helping to mitigate equity risk: 1) long 
Treasuries, 2) trend-following, 3) tail risk hedging and 4) alternative risk premia 
diversifiers, such as carry and value strategies.1 In that paper, the authors 
show that each of these strategies has merit for inclusion in a comprehensive 
risk mitigation portfolio, as combining positive expected return strategies 
that are negatively correlated with equities not only provides higher degree of 
confidence with respect to mitigating equity risk, but also may deliver higher 
returns. We expand upon their research here and develop a comprehensive 
theoretical framework for defensive portfolio construction. 

One reason investors hold these types of investments is the belief that they will provide some 
degree of protection in down equity markets. The key trade-off among these strategies is the 
“cost” of each approach versus the certainty that it will work in times of crisis.2 We can, therefore, 
frame them in the context of a theoretical risk mitigation frontier, as shown in Exhibit 1, where the 
y-axis is the expected return and the x-axis represents the uncertainty that a strategy will work in 
an equity risk-off event. 

Exhibit 1: Risk/return trade-off for defensive strategies 

Expected return 

Alternative 
risk premia Trend-

following 

Long  
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Increasing
uncertainty of 
diversification 

Tail risk  
hedging  

Source: PIMCO 

1 These include currency, fixed income and commodity carry strategies, and other equity risk premia factors, like 
quality and value. 

2 The term "certainty," which is used throughout this paper, does not imply or connote a guaranteed outcome, but 
rather is used to express the relative confidence with which a strategy can be effective. 
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Tail risk hedging is contractually linked to equity market 
performance, providing a direct hedge with a high degree of 
certainty in severe downturns. However, this high degree of 
confidence comes at the cost of several headwinds, including 
negative exposure to the well-established equity risk premium 
and volatility risk premium, which often results in negative 
expected returns. 

Long Treasuries are perhaps the most prominent example of a 
simple and robust positive-expected-return equity-risk-
mitigation strategy. Baz et al. (2018) show that, since the mid-
1990s, being passively long Treasuries has consistently 
delivered a negative average correlation with equities. 
Furthermore, the authors show that exposure to U.S. Treasuries 
has often provided investors with positive absolute returns 
during large equity declines, particularly when those declines 
are associated with a contraction in economic activity. 
Historically, however, the stock-bond correlation has moved 
considerably over time (Campbell et al. 2017), which increases 
uncertainty about using Treasuries for diversification. 
Furthermore, Wright (2011) and Adrian et al. (2017) show that 
the term premium has compressed toward zero over the past 
several decades, casting further doubt on the asset’s forward-
looking return-generating potential. 

Trend-following strategies benefit from persistent trends in 
prices across major markets. Fung and Hsieh (2001) show 
that these strategies exhibit payoff profiles that resemble 
long-volatility strategies. Due to dynamic trading in the 
underlying assets, they are not subject to the same implied 
volatility headwinds faced by option-based strategies such as 
tail risk hedging, making trend-following an efficient way to 
capture the long-volatility profile. However, this efficiency 
comes at the cost of uncertainty around returns and equity 
risk mitigation, as trend-following may deliver negative returns 
when market reversals are abrupt and/or frequent. 
Historically, trend-following has delivered positive returns in 
equity market drawdowns, but there is substantial variation 
around this average. 

Alternative risk premia strategies are broadly defined by 
having 1) limited exposure to traditional equity and bond risk 
premia, 2) a clear economic rationale for their existence, 3) 
empirical validation based on historical data, and 4) 
implementation that typically requires the use of leverage, via 
shorting and derivatives. Given that these strategies are 
designed to exhibit limited exposure to equity markets, they 

are a natural candidate for risk mitigation portfolios. However, 
although the correlation of alternative risk premia with 
equities tends to be near zero, there is wide variation in the 
conditional correlations of these strategies with equities. As a 
result, there is less certainty that these strategies will diversify 
when equity returns are negative. 

1. UNDERSTANDING RISK IN DEFENSIVE STRATEGIES

The goal of a defensive portfolio is effectively twofold. First, 
the allocation to defensive assets should have positive 
expected returns in aggregate. Second, it should provide 
some degree of protection if there is a significant impairment 
to the overall portfolio. Such impairment is almost always 
related to large equity market corrections. However, as 
discussed in the previous section, defensive assets embody a 
range of risk/return trade-offs, in which higher-returning 
strategies generally have a lower expected effectiveness in 
terms of protecting against equity market sell-offs. This raises 
the obvious question: What is the right risk measure for 
defensive strategies? 

While Exhibit 1 shows a stylized example of the risk/return 
trade-off, we need a more precise measure of risk for this 
cohort of investment styles. Obvious measures are metrics 
that describe each strategy’s covariance with equity risk. 
Assets with a greater and more reliable negative covariation 
with equities should generally provide more effective 
protection against broad equity market sell-offs. Equity beta, 
downside beta and conditional returns are all reasonable 
measures of equity market covariation. However, the 
problem is more complicated than this because such 
relationships may not be linear. For example, certain 
strategies may provide little protection against modest 
equity downturns but substantial protection in large market 
drawdowns. Out-of-the-money (OTM) equity puts are an 
example of such an asset. In modestly declining markets, 
OTM puts respond only modestly, but their protection can 
ramp up significantly in large sell-offs. In technical terms, we 
need to assess each strategy’s convexity. 

To assess the overall risk properties of defensive strategies, 
accounting for both small and large market moves, we consider 
the following time-series regression on each strategy’s return: 

-1.�

The word protection used throughout this paper does not imply or connote a guarantee that the strategy will prevent loss, but instead is used to express the 
relative confidence with which a strategy can effectively mitigate downside risks. 
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where  ���  is strategy i ’s excess return over cash, �� is the 
excess return on the S&P 500 index and ��  is an uncorrelated  
residual term. ���� captures each strategy’s general (linear)  
sensitivity to the equity market, while ���� and ���� capture its 
sensitivity to large negative and positive equity market  
movements. The latter two parameters measure the  
strategy’s statistical convexity in up and down markets.3

We estimate Equation 1 for 1) long Treasuries, 2) trend-following,  
3) tail risk hedging, 4) carry and 5) value strategies using daily 
return data from 1 March 1994 to 31 December 2018. The carry  
and value strategies are constructed using currencies, rates and  
commodities. Within each asset class, the carry strategy takes  
long positions in assets with high carry and short positions in  
assets with low carry, while the value strategy takes long  
positions in assets with high value and short positions in assets  
with low value. Details of all backtests are provided in Appendix 1.  
All strategies, except for tail risk hedging, can be levered up or  
down depending on the investor’s needs and we therefore scale  
each to have 5% annualized volatility. 
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1.0 Exhibit 2 shows the results for estimating Equation 1. �� and �� 
are likely to be of the most interest to potential defensive 
strategy investors since they speak directly to downside 
protection with respect to equity risk. ��  is negative and highly 
statistically significant for long Treasuries and tail-risk-hedging 
strategies. As expected, the t-statistics on tail-risk-hedging 
strategies are materially higher, given that they provide a direct 
hedge against equity risk. Furthermore, all strategies except 
carry and value are characterized by positive convexity in down 
markets, as measured by ��. For trend-following strategies, it 
has been well-documented that they are generally able to 
capture significantly down-trending equity market momentum.4

 

Exhibit 2: Estimated beta and convexity of defensive strategies 
�� �� �� �� �� 

Long Treasuries 0.006% -0.06 0.85 0.20 5.8% 

The importance of downside convexity is also illustrated in 
Exhibit 3, which shows the expected payoffs to each of the 
strategies as a function of the daily equity market return, based 
on the parameter estimates in Exhibit 2. For modestly negative 
equity market returns, these strategies show small differences 
in terms of expected returns. However, for large equity market 
drawdowns, the convexity of a long-put-option position begins 
to dominate, resulting in substantially higher expected returns 
for the tail risk hedging relative to other defensive strategies.5

Exhibit 3: Expected returns for defensive strategies versus 
downside equity return 

Long Treasuries Trend-following Tail risk hedging  Carry Value 
7.0 
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S&P 500 daily return (%) 

Source: 	PIMCO	 and 	Bloomberg	 as 	of 	December 	2018. 	Hypothetical example for 
illustrative purposes only. 

So far, the discussion has focused on estimates of conditional 
expected returns. A natural question that follows is how certain 
we are that the actual returns will be close to their predicted 
levels. To assess this, we turn to the r-squared statistics in 
Exhibit 2. While long Treasuries and trend-following strategies 
have negative equity betas and positive downside convexity, the 
r-squared values of these regressions are low at around 6%. 
That is, the actual returns on these strategies could be far from 
the positive predicted values, and therefore the equity hedge is 
far from guaranteed. This is even more true for carry and value 
strategies which have r-squared values around zero. Therefore, 
these strategies can be viewed as good equity diversifiers but 
not necessarily true hedges against equity market risk. Tail risk 
hedging, on the other hand, is characterized by a very high 
r-squared around 85%, implying that the actual returns are 
unlikely to deviate materially from their expected values. As 
such, the likelihood of tail risk hedging protecting against 
downside equity risk is significantly higher, making it the most 

t-stat 1.49 -11.08 2.49 0.63 
Trend-following 0.012% -0.01 3.33 -2.64 6.6% 
t-stat 3.18 -2.11 10.16 -8.90 
Tail risk hedging -0.011% -0.20 7.83 -6.10 86.1% 
t-stat -5.65 -76.90 47.21 -40.69 
Carry 0.021% -0.01 -0.79 0.16 0.1% 
t-stat 5.39 -1.24 -2.36 0.53 
Value 0.013% 0.00 -1.22 1.12 0.7% 
t-stat 3.25 -0.06 -3.47 3.52 

Hypothetical example for illustrative purposes only. 	
Source:	 PIMCO	 and	 Bloomberg	 as	 of	 December 	2018. 	Regressions 	are 	estimated 	
using 	daily 	unannualized 	data 	from 	1 	March 	1994 	to 	31 	December 	2018. 	

3 The 	reason	 for	 the 	½	 terms	 in	 front 	of 	the 	convexity	 components	 is	 to	 be	 consistent	 with	 the	 second-order	 Taylor	 series	 expansion. 	It	 does 	not	 change 	the 	
economic	 significance	 in	 any	 way. 

4 It	 can	 be	 shown	 that	 trend-following 	strategy 	long 	long-dated 	variance 	and	 short	 short-dated	 variance.	 Hence	 the	 strategy	 is	 exposed	 to	 crash	 risk	 as	 it	 means	 
a	 spike	 in	 short-dated 	variance. 

5 One 	should 	keep 	in 	mind 	that 	tail 	risk 	hedging 	has 	volatility 	around 	6%, 	compared 	with 	5% 	for 	the 	other 	strategies. 
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effective in the defensive strategy tool kit. However, this greater 
degree of protection comes at a cost: low or even negative 
average returns. 

2. A THEORETICAL FRAMEWORK

In this section, we develop a theoretical framework for 
defensive portfolio construction. In many ways, it is not 
materially different from the standard Markowitz (1952) mean-
variance optimization (MVO) problem, except that the choice of 
assets and their respective allocation are affected by the 
investor’s need for downside equity market protection. 

In our framework, investors care about both the conditional and 
the unconditional properties of the defensive portfolio. 
Specifically, investors optimize the standard risk/return trade-off 
between the portfolio’s unconditional expected return and 
volatility while at the same time constraining the portfolio to have 
certain downside protection properties, measured by its 
conditional beta. The conditional beta refers to the asset’s beta in 
down equity markets, which may be quite different from its beta 
in “normal” markets, depending on the asset class or investment 
style under consideration. As described in the previous section, 
the constraint on conditional beta is particularly relevant because 
asset classes and styles with the highest unconditional expected 
returns tend to have the weakest downside equity protection, and 
vice versa. This observation creates a risk/return trade-off in 
which a higher degree of downside protection must be “paid for” 
via lower returns. 

Formally, we consider an investor who chooses a set of 
weights, ��, to maximize the defensive portfolio’s unconditional 
expected return subject to constraints on its unconditional 
volatility and conditional equity beta: 

���� �� �� � ���� (2) 

�������� � ������ (2.1) 

(2.2) 

�
where μ is a vector of unconditional expected excess returns, 
Σ is the unconditional covariance matrix, ���  is the targeted 
unconditional portfolio variance, ��  is a vector of conditional 
betas and ��  is the conditional beta target of the portfolio. 
Equations 2.1 and 2.2 thus represent constraints on the 
portfolio problem imposed by the investor, reflecting both the 
investor’s willingness to assume volatility risk and the need for 

downside equity market protection. By modeling the equity 
beta component of the problem as conditional, we are 
explicitly accounting for the fact that the asset classes in a 
defensive portfolio can have different conditional and 
unconditional behavior. We specifically exclude the market 
portfolio from the optimization problem and only consider a 
portfolio of defensive assets.6

A detailed solution to the problem is provided in Appendix 2. 
Appendix 2.1 shows properties for three special portfolios: 1) 
the unconstrained MVO portfolio ����, which has a conditional 
beta ���� and Sharpe ratio ����� 

, 2) the minimum-variance 
portfolio with a unit condition al beta (unit-beta portfolio), �� , 
which has an unconditional variance �� 

��  and a Sharpe ratio 
denoted by ���� (hence, ���� is the minimum variance 
portfolio with conditional beta ��) and 3) the zero-beta MVO 
portfolio ���� � ������ , which adjusts the weights of the 
unconstrained MVO proportionally to the unit-beta portfolio to 
achieve a zero net equity beta. 

� �

We are, of course, most interested in the case in which the 
conditional beta constraint (2.2) is binding. In this case, the 
optimal portfolio is given by 

 (3) 

where c is a constant. Equation (3) shows that the optimal 
portfolio is a weighted sum of the unit-beta portfolio ��and the 
zero-beta MVO portfolio ���� � ������ . For intuition, the 
solution can be thought of as a two-step procedure: First, go 
short the minimum-variance unit-beta portfolio in order to 
achieve the conditional beta target, �� , then hold some amount 
in the zero-beta MVO portfolio to maximize the unconditional 
expected return. The degree of leverage, c, is a function of the 
overall unconditional volatility target, ��, and the fraction of the 
risk budget remaining after the conditional beta constraint has 
been satisfied. 

As shown in Appendix 2.2, the expected return of the optimal 
portfolio is given by 

(4) 

A close inspection of Equation (4) yields some powerful 
insights. The first term is the unconditional expected excess 
return on the beta portfolio. This term arises due to the 
conditional beta constraint and directly corresponds to the first 

6 The reason for excluding the market portfolio is that, when the market portfolio is part of the opportunity set, the optimal solution combines the MVO with 
a short position in equities. Though this may be a reasonable strategy, investors tend not to short equities in the defensive asset portfolio. Rather, the beta 
target is achieved only with defensive assets. 
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term in (3). Under the Capital Asset Pricing Model (CAPM), the 
expected excess return on the unit-beta portfolio will equal the 
expected equity excess return ���� � ������� ; thus, the 
expected return on the beta portfolio, ���������, would be negative 
for �� � �. However, this term could be less negative or even 
positive when the CAPM does not hold (as we assume in our 
framework) since the investor can hold assets with both 
negative betas and positive unconditional expected returns. 
Nonetheless, even though the value of this term can be positive 
in our framework, it is useful to think of this first term as a cost, 
or “insurance premium”, associated with achieving a negative 
conditional beta.7

The variance of the beta portfolio is ��� ����. Therefore, the 
second term in the parentheses measures the amount of the 
volatility budget remaining after the beta constraint has been 
satisfied. We refer to this term as the “risk budget” because it 
reflects the quantity of risk that can be allocated to the return-
enhancing zero-beta MVO portfolio once the beta constraint 
has been achieved. If, for example, the investor desires to 
achieve a highly negative beta, this will have the effect of 
decreasing the amount of the risk budget that can be used for 
increasing overall returns. 

The last term in parentheses is the difference between the 
squared unconditional Sharpe ratio of the unconstrained MVO 
and that of the beta-hedging portfolio. We label this term 
“efficiency” because it reflects the extent to which the defensive 
assets collectively embody diversifying risk/return properties 
relative to the pure hedging portfolio. Efficiency is scaled by the 
risk budget in Equation 4 because only variance that is not used 
to satisfy the targeted beta can be used to exploit the return-
enhancing properties of the defensive assets. 

This intuitive decomposition leads us to a general rule of 
thumb to describe the expected return on a portfolio of 
defensive assets: 

� ������������������ � ����������������������� ,� �� (5) 

where the insurance premium is ��� ���� , the risk budget is 
��� � ���� ��

� � �� and the efficiency is ���� � �������� �� 
 
�.

Equation 5 tells us that the defensive portfolio problem is 
ultimately about balancing the cost of hedging equity risk with 
the desire to generate positive unconditional returns. It shows 
that positive expected returns on a defensive portfolio can be 
achieved if one can allocate a sufficient amount of risk (risk 
budget) to assets with positive Sharpe ratios (efficiency) and 
one does not “overpay” for the equity hedging component 
(insurance premium). Under CAPM, the insurance component 
will generate a negative expected return contribution because 
���������� <0. However, according to Equation (5), we can do better 
than this when CAPM does not hold, as the insurance cost 
becomes less expensive and diversification adds return via the 
efficiency measure.8

3. EMPIRICAL RESULTS

To better understand the implications of our model, we 
consider five different asset classes and styles: long Treasuries, 
trend-following, tail risk hedging, carry and value. Exhibit 4 
shows the excess return moment assumptions for each of 
these strategies. The unconditional moments for the S&P 500 
and tail-risk-hedging strategy were calculated using quarterly 
data from first-quarter 1994 to fourth-quarter 2018. 

For long Treasuries, trend-following, carry and value strategies, 
we believe it is more appropriate to use reasonable forward-
looking views that account for the realities of today’s markets. 
To reflect interest rates that are much lower today than over our 
historical sample, we assume a very modest Sharpe ratio of 
0.07 (or an excess return of 0.4%) for long Treasuries.9 For 
trend-following, carry and value strategies, we assume the 
unconditional Sharpe ratios to be 0.25, 0.50 and 0.25, 
respectively, which implies expected excess returns of 1.3%, 
2.5% and 1.3%, respectively.10

For long Treasuries, trend-following, carry and value strategies, 
we assume a 5% annualized unconditional volatility, as they can 
generally be implemented using derivatives and therefore various 
volatility targets are relatively easy to achieve. Finally, we note the 
negative Sharpe ratio for tail risk hedging, which reflects the fact 
that passively buying puts has historically been a negative-
returning strategy. The conditional moments for the S&P 500 
and all strategies are calculated using quarters in which the S&P 
500 excess returns are less than -3.75% (-15% annualized). 

7 This term can be positive if the unit-beta portfolio loads heavily on negative beta and positive expected return strategies. In general, we should expect the 
insurance component to be greater than ���������, but it can be negative if we use assets like put options. We can think of this term as a cost even if the beta 
portfolio has a positive expected return, as it still has a worse risk/return trade-off than the unconstrained MVO portfolio. 

8 See Appendix 3 for a two-risky-asset example.  
9 The Sharpe ratio of 0.07 reflects PIMCO’s 5-year capital market assumption for long Treasuries.  
10 See Exhibit 12 in Appendix 1 for the raw return moments.  
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Exhibit 4: Assumptions on conditional and unconditional excess return moments 
Unconditional moments Conditional moments 

Expected Equity Equity 
excess return Volatility Sharpe ratio Volatility covariance Equity beta correlation 

Value 1.3% 5.0% 0.25 5.1% 0.3% 0.26 0.52 

S&P 500 5.2% 15.6% 0.33 10.3% 1.1% 1.00 1.00 

Long Treasuries 0.4% 5.0% 0.07 6.7% -0.4% -0.42 -0.64 

Tail risk hedging -2.4% 5.4% -0.45 7.1% -0.7% -0.64 -0.92 

Trend-following 1.3% 5.0% 0.25 6.4% -0.5% -0.43 -0.70 

Carry 2.5% 5.0% 0.50 5.7% 0.0% -0.04 -0.06 

Source: PIMCO and Bloomberg as of December 2018. Data is quarterly from 1 March 1994 to 31 December 2018. Expected returns are in excess of cash. Conditional 
moments are based on S&P 500 quarterly excess returns less than -3.75%. Values in blue reflect overrides to the historical data. 

Exhibit 5 shows the allocations to each of the assets/styles in 
Exhibit 4 as a function of the targeted conditional beta for a 10% 
volatility portfolio. Allocations on the left side of the exhibit 
reflect portfolios for which equity hedging is less of a 
consideration and thus have the least negative conditional 
betas. As expected, such portfolios are made up of higher-
returning assets since the need for equity hedging is minimal. 
In fact, these portfolios actually hold a short position in the 
tail-risk-hedging portfolio (effectively selling puts) as a means 
of increasing the unconditional expected return. Moving right 
on the graph, the importance of equity hedging increases, and 
the impact of the conditional beta constraint becomes more 
pronounced. As a result, the investor allocates to more “reliable” 
hedging sources, such as long Treasuries and long puts, as the 
conditional beta constraint becomes increasingly negative.11 

Importantly, under this framework, as market conditions change 
investors can update their assumptions on expected returns and 
betas, etc., to rebalance the defensive portfolio weights. 

equity hedge. Exhibit 6 shows the decomposition of the 
portfolio return based on Equations 4 and 5. With a zero 
conditional beta, the investor can avoid using any of their risk 
budget for equity hedging and as a result holds a portfolio that 
is perfectly proportional to the zero-beta MVO portfolio. In this 
case, all of the return comes from the combination of efficiency 
and risk budget described in Equation (5). As the conditional 
beta constraint becomes negative, the investor must use an 
increasingly large fraction of her risk budget purely for hedging 
purposes, resulting in a drag on expected return from the 
increasing insurance premium. On the far-right side of Exhibit 6, 
the unconditional return actually turns negative, as the majority 
of the portfolio is made up of “insurance assets” such as put 
buying. At the extreme, 100% of the investor’s risk budget is 
used to pay the insurance premium and she holds a portfolio 
that is perfectly negatively proportional to the unit-beta 
portfolio. Because this portfolio is dominated by equity put 
options (the unit-beta portfolio is dominated by shorting put 
options), the expected return on the portfolio is negative. 

Exhibit 5: Optimal defensive portfolio weights    
Exhibit 6: Decomposition of unconditional expected 
excess returns 

Defensive portfolio weights 
Long Treasuries Trend-following Tail risk hedging Carry Value Net exposure 

4.00 Unconditional expected return decomposition 
3.00 Insurance premuim Efficiency x Budget Total 
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Source: PIMCO 
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Conditional beta 

As expected, more negative conditional betas result in 
portfolios with lower unconditional returns, reflecting the “price” 
investors must pay to increase the size and effectiveness of the 

Source: PIMCO 

11 While trend-following has a larger weight than that of long Treasuries, the position on the latter is more stable across various beta targets. For example, as the 
beta target moves from 0 to -1, the weight on trend-following drops by around 20% while that on long Treasuries increases by around 33%. 

Exhibits are hypothetical examples for illustrative purposes only. 
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Exhibit 7: Defensiveness/cost trade-off 
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-0.8
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Conditional correlations 

Source: PIMCO and Bloomberg as of December 2018 

A natural question about the optimal defensive portfolios is 
how much benefit we get from forming portfolios relative to 
using individual defensive strategies. To evaluate this, Exhibit 
7 plots the defensiveness versus the cost for the optimal 
portfolios and for the five individual strategies. To compare 
across portfolios/strategies with different volatilities, we use 
the unconditional Sharpe ratio as a measure of cost and 
conditional correlation as a measure of defensiveness.12

Indeed, the benefit of forming portfolios is sizable. Consider 
the trend-following strategy, which is the closest to the 
frontier, as an example. This strategy has a conditional 
correlation of -0.70 and an unconditional Sharpe ratio of 0.25. 
In contrast, the optimal portfolio with a beta target of -0.9 
achieves a correlation of -0.68 but an unconditional Sharpe 
ratio of 0.36.13 Hence, the optimized portfolio achieves a 
roughly 40% improvement in Sharpe ratio, with a similar 
overall level of defensiveness compared to trend-following on 
a stand-alone basis. 

Thus far, we have considered the salient properties of the optimal 
defensive portfolio given a conditional beta target. The 
conditional beta, of course, is calculated based on covariance/ 
correlation estimates and thus is subject to estimation error. To 
assess the uncertainty around these estimates, we calculate the 
95% confidence intervals around the conditional correlations.14

-0.8 
0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 

Conditional beta 

This is shown in Exhibit 8, which illustrates that even after 
targeting a specific equity beta, the defensive properties of these 
portfolios are far from guaranteed. This is particularly true for 
portfolios derived from less negative beta constraints. For 
example, Exhibit 8 shows that to obtain a negative conditional 
correlation with 95% confidence, the conditional beta target 
would need to be below -0.6. Likewise, targeting a zero 
conditional correlation could produce realized correlations 
approximately between -0.5 and +0.5 – perhaps a wider range 
than some investors are comfortable with. If the investor desires 
to obtain a high degree of defensiveness with high confidence – 
say, a conditional correlation below -0.5 with 95% confidence – 
the investor needs to target a beta below -1.1. 

Exhibit 8: 95% confidence interval for conditional 
correlation estimates 
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Source: PIMCO 

12 Given the optimal weights for a beta target (βi), we can calculate the portfolio’s conditional volatility, and the conditional Pearson correlation is βi x (conditional 
volatility of S&P 500) ÷ (conditional volatility of portfolio). 

13 We should note that it is not guaranteed that the individual strategies will lie below the optimal portfolio curve in the unconditional Sharpe ratio-conditional correlation 
space. This is because we have a conditional beta and not a conditional volatility target in the optimization problem. Hence, if the conditional volatility of the optimal 
portfolio is too high, then the conditional correlation could be less negative, even if the conditional beta is more negative. 

14 We first convert conditional beta to conditional correlation, then the confidence interval of conditional correlation is constructed using Fisher transformation. The 
�� � ��� confidence interval for is � ����� ������ � � ��� � ���� ������ � � ��� 

��� ��� 
*, where r is the sample correlation and n the sample size. tanh and artanh are the hyperbolic

tangent and the inverse hyperbolic tangent functions, respectively. 

Exhibits are hypothetical examples for illustrative purposes only. 
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Exhibit 9: Portfolio performance historical drawdown periods 

3/1994 
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6/2000 
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6/2002 

9/2002 

3/2003 

12/2007 

3/2008 

6/2008 

9/2008 

12/2008 

3/2009 

6/2010 

9/2011 

9/2015 

12/2018 

Beta target 

0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 

-12.7% -12.8% -12.7% -12.6% -12.4% -12.2% -11.8% -11.3% -10.7% -10.0% -9.0% -7.7% 

-0.2% 0.1% 0.5% 0.9% 1.3% 1.6% 2.0% 2.4% 2.8% 3.2% 3.6% 4.0% 

1.6% 1.6% 1.5% 1.5% 1.4% 1.4% 1.3% 1.2% 1.1% 1.0% 0.8% 0.6% 

5.7% 5.5% 5.2% 4.9% 4.5% 4.1% 3.6% 3.1% 2.6% 2.0% 1.3% 0.4% 

6.9% 7.1% 7.3% 7.4% 7.4% 7.5% 7.4% 7.3% 7.2% 6.9% 6.5% 6.0% 

4.9% 5.3% 5.8% 6.2% 6.6% 6.9% 7.2% 7.5% 7.7% 7.9% 7.9% 7.9% 

1.8% 2.6% 3.4% 4.1% 4.9% 5.6% 6.3% 7.0% 7.7% 8.3% 8.9% 9.5% 

7.3% 7.8% 8.1% 8.5% 8.8% 9.0% 9.2% 9.3% 9.3% 9.3% 9.1% 8.8% 

-0.6% 0.8% 2.1% 3.4% 4.8% 6.1% 7.5% 8.9% 10.2% 11.6% 13.0% 14.4% 

4.9% 4.7% 4.5% 4.3% 4.0% 3.7% 3.4% 3.1% 2.6% 2.2% 1.6% 0.9% 

7.7% 7.7% 7.7% 7.7% 7.6% 7.5% 7.3% 7.0% 6.7% 6.2% 5.7% 5.0% 

9.5% 9.7% 9.9% 10.1% 10.2% 10.2% 10.1% 10.0% 9.8% 9.4% 8.9% 8.2% 

8.0% 7.7% 7.3% 6.9% 6.4% 5.9% 5.3% 4.6% 3.9% 3.1% 2.1% 0.9% 

-9.2% -8.7% -8.2% -7.6% -6.9% -6.2% -5.4% -4.5% -3.5% -2.4% -1.2% 0.2% 

3.4% 5.4% 7.4% 9.4% 11.4% 13.3% 15.2% 17.1% 18.9% 20.7% 22.5% 24.2% 

-3.7% -3.5% -3.2% -2.8% -2.5% -2.1% -1.7% -1.3% -0.8% -0.3% 0.3% 0.9% 

1.7% 2.0% 2.3% 2.6% 2.8% 3.1% 3.4% 3.6% 3.8% 4.0% 4.2% 4.3% 

10.4% 11.4% 12.4% 13.3% 14.1% 14.9% 15.5% 16.1% 16.6% 17.0% 17.2% 17.2% 

2.8% 2.9% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 2.9% 2.8% 2.7% 2.5% 

-3.6% -3.4% -3.2% -3.0% -2.7% -2.4% -2.1% -1.7% -1.3% -0.9% -0.4% 0.2% 

-1.2 

-5.9% 

4.4% 

0.4% 

-0.7% 

5.2% 

7.7% 

10.0% 

8.1% 

15.8% 

0.1% 

3.9% 

7.1% 

-0.6% 

2.1% 

25.7% 

1.7% 

4.4% 

16.7% 

2.1% 

1.0% 

-1.3 

-1.2% 

4.8% 

-0.3% 

-3.1% 

2.8% 

6.3% 

10.1% 

5.8% 

17.3% 

-1.9% 

1.1% 

3.7% 

-3.9% 

6.1% 

26.4% 

3.4% 

4.1% 

13.8% 

1.2% 

2.5% 

In

LTE 

-4.3% 

5.8% 

-1.3% 

-0.6% 

4.9% 

0.0% 

5.2% 

5.0% 

10.5% 

1.0% 

3.9% 

2.8% 

-2.6% 

1.9% 

16.3% 

-4.8% 

11.0% 

22.3% 

4.6% 

3.2% 

dividual (rescaled 10% 
unconditional vol) 

TFE TRH Carry 

-10.4% 1.5% -5.0% 

3.0% 5.0% -1.9% 

-0.2% 0.3% 4.1% 

0.3% -2.0% 5.9% 

6.7% 1.7% 2.6% 

7.8% 7.1% 7.1% 

6.9% 13.5% 5.6% 

5.9% 6.3% 10.2% 

9.0% 17.1% 4.9% 

4.3% -0.8% -1.9% 

4.2% -0.4% 6.2% 

11.8% 2.0% 1.9% 

1.4% -1.9% 8.8% 

1.4% 5.6% -11.6% 

22.1% 24.2% 0.6% 

0.1% 7.9% 3.1% 

0.2% 5.3% 1.4% 

9.6% 8.1% 8.6% 

2.2% 1.8% 0.0% 

1.7% 4.2% -8.1% 

Value 

-2.0% 

1.3% 

1.2% 

6.8% 

2.4% 

0.7% 

6.6% 

3.7% 

-5.4% 

8.0% 

1.5% 

0.9% 

9.5% 

-6.8% 

-8.4% 

4.3% 

7.4% 

-5.2% 

5.2% 

4.2% 

S&P 
500 

-4.9% 

-11.6% 

-7.8% 

-4.5% 

-9.6% 

-13.3% 

-15.8% 

-14.1% 

-18.0% 

-3.9% 

-5.1% 

-10.7% 

-3.9% 

-9.5% 

-23.0% 

-11.8% 

-11.9% 

-14.4% 

-7.0% 

-14.5% 

Average 

Minimum 

Maximum 

2.3% 2.7% 3.1% 3.4% 3.7% 4.0% 4.3% 4.6% 4.9% 5.1% 5.3% 5.4% 

-12.7% -12.8% -12.7% -12.6% -12.4% -12.2% -11.8% -11.3% -10.7% -10.0% -9.0% -7.7% 

10.4% 11.4% 12.4% 13.3% 14.1% 14.9% 15.5% 17.1% 18.9% 20.7% 22.5% 24.2% 

5.5% 

-5.9% 

25.7% 

4.9% 

-3.9% 

26.4% 

4.2% 

-4.8% 

22.3% 

4.4% 5.3% 2.1% 

-10.4% -2.0% -11.6% 

22.1% 24.2% 10.2% 

1.8% 

-8.4% 

9.5% 

Source: PIMCO and Bloomberg as of December 2018. Each row represents a quarter in which the S&P 500 excess return was lower than -3.75%. Each column under “Beta 
target” shows portfolio returns using optimal weights with the specified beta target (Exhibit 5). Each strategy is scaled to have 5% unconditional volatility. The columns 
under “Individual” show the historical return for each individual strategy, rescaled to 10% unconditional volatility for comparison. LTE stands for long Treasuries, TFE for 
trend-following and TRH for tail risk hedging. Due to data availability, results for first-quarter 1994 are based only on March 1994 data. 

Finally, to better understand how much variability one might expect in a portfolio of defensive assets, we calculate the returns of the 
optimal portfolios in Exhibit 5 for the 20 quarters in which the excess return on the S&P 500 was less than -3.75%. Exhibit 9 shows 
these results.15 Indeed, the average conditional return increases nearly monotonically with the conditional beta target and the 
minimum and maximum returns go from largest to smallest moving left to right. These same measures can help to understand the 
risk/return properties of individual defensive strategies. For example, tail risk hedging has a much more consistent payoff in negative 
equity markets than, say, carry or value. This is precisely why the most negative conditional beta portfolios will have relatively large 
allocations to tail-risk-hedging strategies. Though by no means perfect, these results indicate that constraining the defensive portfolio 
to more negative equity beta levels materially increases the payoff in stressed markets. 

15 Exhibit 9 should not be considered a backtest of the defensive strategy because the historical performance is based on the current optimal portfolio weights, 
not what would have been held in the past. Nonetheless, these values are useful in understanding when, and to what extent, defensive strategies have been 
effective historically. 
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4. EXTENSIONS

In practice, we could further refine the asset selection for each strategy to potentially improve its performance. In this section, we 
show two such refinements – one for the fixed income (long Treasuries) part of the strategy and one for the trend-following portion. 

In the first example, we replace the passive long Treasuries index with an active swap position. Specifically, we leverage a constant-
maturity five-year swap to achieve the same duration as the long Treasury index. Historically, the swap strategy has delivered a 
much higher Sharpe ratio than the index return while preserving the beneficial downside equity property of passive Treasuries.16

Over our sample, the unconditional Sharpe ratio of the swap strategy is 0.8 while that of the long Treasury index is 0.4. These two 
series also have high correlation – around 0.80 – both conditionally and unconditionally (Davis and Fuenzalida 2019). We repeat 
our optimization problem replacing long Treasuries with the active swap strategy and haircut the expected unconditional Sharpe 
ratio to 0.14 so that it is double that of long Treasuries. The swap strategy has a conditional volatility of 6.5% and a conditional  
equity beta of -0.53 (or a conditional equity correlation of -0.84).

Exhibit 10 shows the portfolio allocations. Because of the better return property of the active swap strategy, the optimization now 
allocates more to fixed-income and the unconditional Sharpe ratio-conditional correlation frontier shifts upward.  

Exhibit 10: Optimal portfolio and Sharpe ratio-correlation frontier 
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Source: PIMCO and Bloomberg as of December 2018 

In the next example, we refine the trend-following strategy by filtering it to exclude positions that have a correlation with the S&P 
500 higher than 0.2. That is, we do not hold long (short) assets that are too positively (negatively) correlated with equity. Perhaps 
unsurprisingly, imposing this constraint decreases the historical unconditional Sharpe ratio for the trend-following strategy from 
0.66 to 0.47. However, it greatly improves the strategy’s performance during equity drawdowns; the filtered trend-following 
strategy has a conditional correlation with the S&P 500 of -0.83, compared with -0.70 for the benchmark version. 

Exhibit 11: Optimal portfolio and Sharpe ratio-correlation frontier 
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Source: PIMCO and Bloomberg as of December 2018. Exhibits are hypothetical examples for illustrative purposes only. 

16 Historically, leveraging the five-year swap rate to match the duration of long Treasuries has delivered the highest Sharpe ratio of a 60/40 portfolio most of 
the time. 
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Exhibit 11 displays the portfolio allocation, as well as the Sharpe 
ratio-correlation frontier. We set the unconditional Sharpe ratio 
for the filtered trend-following at 0.15 to reflect the fact that, 
historically, its unconditional Sharpe is lower than its unfiltered 
counterpart. However, as we can see in Exhibit 11, even with the 
lower unconditional return assumption, the filtered trend-
following still offers good balance between return and 
defensiveness. As a result, we observe material allocations to 
the defensive trend-following strategy across most of the 
conditional beta spectrum. Furthermore, because the filtered 
trend-following strategy has a much better defensive property, 
the Sharpe ratio-correlation frontier shifts outward relative to 
the benchmark case. 

5. CONCLUDING REMARKS

We first examined the general diversification and hedging 
properties for various well-accepted equity defensive assets, 
noting a critical trade-off between a strategy’s defensiveness 
and its return potential. This is a key point that investors must 
understand: It will only be possible to obtain high and reliable 
negative conditional betas if the investor is willing to give up 
some overall return for the increased certainty. We then 
proposed a theoretical framework based on this risk/return 
trade-off for optimal defensive portfolio construction. The 
model was evaluated using data on five common strategies. 
The empirical results highlighted the benefit of using a 
portfolio approach rather than simply relying on individual 
strategies. Finally, we showed that refining certain strategies 
may help to achieve better Sharpe ratios while at the same 
time maintaining, or even enhancing, those strategies’ 
downside properties. 
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TECHNICAL APPENDIX 

Appendix 1: Backtests for trading strategies 

Long Treasuries: 
PnL is calculated daily using the return on the Bloomberg 
Barclays US Long Treasury Total Return Index (Unhedged). 

Tail risk hedging: 

PnL is calculated as follows: The underlying portfolio, ��, earns 
cash rate (daily compounding). Each month on option 
expiration day, use the fund in the underlying portfolio to buy 

������ � ��� contracts of 10% out-of-the-money put options 

with a one-year expiration (�� denotes the S&P 500 index value 
on option expiration date t). At each point in time, the option 
portfolio consists of 12 put options, with expiration times 
ranging from one to 12 months. The PnL is calculated daily 
using the total portfolio, which includes the underlying portfolio 
and the options portfolio. 

Carry: 
Target a 1% scale based on the 260-day volatility for each of the 
three asset classes. For currency, at the beginning of each 
month, rank G10 currencies against USD (AUD, CAD, CHF, EUR, 
GBP, JPY, NOK, NZD and SEK) based on their annualized real 
carry. Long the top-third-highest-yielding currencies, and short 
the bottom-third-lowest-yielding currencies. 
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�� ���� � ������ � ���� ���
�
�
�
�
�

�
� 
����

For rates, rank G6 10-year swaps (AUD 10Y, CAD 10Y, EUR 10Y, 
GBP 10Y, JPY 10Y and USD 10Y) by carry plus roll-down per 
year of duration. Long the top-third-highest carry and short the 
bottom-third-lowest carry plus roll-down per year of duration. 

For commodity, calculate carry using commodity forwards for 21 
commodities (aluminum, Brent, cocoa, coffee, copper, corn, 
cotton, crude, gasoline, gold, heating oil, lead, low sulphur gasoil, 
natural gas, nickel, platinum, silver, soybeans, sugar, wheat and 
zinc). At the beginning of each month, rank the commodities 
based on their annualized nominal carry. Long those with the 
top-third-highest carry, and short those with the bottom-third-
lowest carry. 

Value: 
Target a 1% scale based on the 260-day volatility for each of the 
three asset classes. For currency, at the beginning of each 
month, rank the G10 currencies against USD (AUD, CAD, CHF, 
EUR, GBP, JPY, NOK, NZD and SEK) based on their purchasing 
power parity. Long the lowest-third currencies, and short the 
highest-third currencies. 

For rates, rank G6 10-year swaps (AUD 10Y, CAD 10Y, EUR 10Y, 
GBP 10Y, JPY 10Y and USD 10Y) by their real yields, then long 
the highest third and short the lowest third. 

For commodity, divide the assets into four sectors: livestock 
(live cattle and lean hogs), grain (corn, soybeans and wheat), 
soft (cocoa , coffee, cotton and sugar) and petroleum (Brent, 
crude, gasoline, heating oil and low sulphur gasoil). At each 
point in time for each commodity, compute the five-year rolling 
risk-adjusted return of the front rolling contract. Within each 
sector, long the third with the lowest risk-adjusted return and 
short the third with the highest risk-adjusted return. 

Trend-following: 
Target a 1% scale based on the 260-day volatility for each of the 
four asset classes: equity (Euro Stoxx 50, S&P 500, Nikkei 225, 
FTSE 100, ASX 200 and Swiss Market Index); commodity 
(aluminum, Brent, cocoa, coffee, copper, corn, cotton, crude, 
gasoline, gold, heating oil, lead, low sulphur gasoil, natural gas, 
nickel, platinum, silver, soybeans, sugar, wheat and zinc); 
currency (AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD and SEK 
against USD); and rates (10-year swaps for AUD, CAD, EUR, GBP, 
JPY and USD). For each asset at each point in time, calculate 

the difference between the last value of the excess return index 
relative to its 250-day moving average. Assuming the signal has 
a normal distribution, apply the normal CDF and convert the 
signal to a strength measure between 0 and 1. Apply a response 
function to map the measure of the strength to the position, the 
maximum <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>