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Executive Summary
 • It sometimes pays to state the obvious: Some might say that fixed income is 

in a pickle. After all, real bond yields have trended down for the past 60 years. 
10-year real yields are now negative in many major markets.

 • Yet what seems obvious isn’t necessarily true. Viewed discretely or in the 
context of a diversified portfolio, bonds continue to offer numerous benefits 
and potential for appreciation:

 - Interest rate fundamentals remain broadly supportive, and rates have the 
potential to fall further.

 - Fixed income, particularly credit, remains attractively priced relative to 
equity, which is valued near historical highs. Furthermore, private credit 
continues to outperform public high yield, a trend likely to be supported by 
continued bank regulation.

 - The probability of stocks outperforming Treasuries over the next 10 
years may only be 65%, based on our simple model and historical data. 
If we assume mean reversion in the CAPE ratio, this probability could be 
substantially lower.

 - Bonds may continue to serve as a potent hedge in broad portfolios. 
Investors targeting a low portfolio equity beta may well consider increasing 
their fixed income allocation.

 - The bond market has historically provided much better sources of alpha 
than the equity market in general, for reasons explained in Baz et al. (2017). 

INTRODUCTION: IS FIXED INCOME IN A PICKLE? 

It sometimes pays to state the obvious: Some might say that fixed income is in a pickle. The 
downward trend in real bond yields over the past 60 years speaks for itself. The 10-year real yield 
is now negative in many major markets (see Exhibit 1).
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As to nominal returns, the most you can make from holding a 
bond to maturity is, well, the yield to maturity (YTM) – slim 
pickings, that is when yields are not negative, as shown in 
Exhibit 2. How about the downside? It is said that the only way 

to escape the abyss is to look at it. In this case, investors can 
look at a host of event risks – including high inflation, sovereign 
defaults and fiscal dominance – all stemming from fiscal and 
monetary incontinence. 
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Exhibit 1: 10-year real government bond yields (1960-2020) 

Source: PIMCO and Global Financial Data as of 30 November 2020. Real yield is measured by nominal yield of a 10-year government bond minus local expected inflation. 
Expected inflation is proxied by the 10-year exponentially weighted moving average of realized inflation. 
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Exhibit 2: Yield curves in G7 countries

Source: PIMCO and Bloomberg as of 7 January 2021
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Exhibit 3: Stock-bond correlation in the U.S. 

Source: PIMCO, Global Financial Data and Bloomberg as of 31 December 2020. Note: Shaded periods show U.S. recessions designated by NBER. Stocks are 
represented by the S&P 500 Total Return Index and bonds by the GFD USA 10-year Government Bond Total Return Index. We report rolling 60-month correlations 
at monthly frequency. 

Furthermore, it is not immediately clear that fixed income still 
acts as a hedge at current yield levels, especially given that the 
stock-bond correlation historically has not been consistently 
negative (see Exhibit 3). 

Does all this spell the end of fixed income as an asset class – or 
are the reports of its death greatly exaggerated? 

We argue the latter. There are several key reasons:

 • Interest rate fundamentals remain broadly supportive.

 • Credit remains attractively priced relative to equities.

 • Bonds can serve as a potent hedge in a broad portfolio.

 • The bond market has historically provided much better 
sources of alpha than the equity market. 

In the pages that follow, we present a deep historical and 
quantitative analysis that supports our conviction that fixed 
income is alive and well. 

1. THE WEIGHT OF FUNDAMENTALS 

A host of factors affect interest rates, and we present a handful 
of toy models in Appendix 1. They offer a coherent departure 
point for understanding interest rates. The reality of fixed 
income is, of course, messier than models (see Exhibit 4). A 
realistic laundry list of fundamentals would include: 

Demographic trends: Lower population growth and aging have 
three main effects on real interest rates, and they don’t all work 
in the same direction. 

 • The ratio of elderly individuals (who dissave) to working 
people (who save) has increased; the result is lower savings 
and a reduced supply of capital, which exerts upward 
pressure on rates. 

 • As life expectancy has risen, workers have increased savings 
to smooth lifetime consumption; stepped-up savings push 
rates lower. 

 • The capital-output ratio has increased with declining 
demographics, depressing the return on capital and real 
interest rates. 
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All in all, looking at a cross section of countries, it appears that 
the net impact of aging is lower real rates. The Solow–Swan 
and Long–Plosser models (Equations A.4 and A.28) in 
Appendix 1 align with this conclusion. 

Productivity: Productivity growth is declining, leading 
households to increase savings and accumulate capital to keep 
future consumption in line with current consumption (see 
Exhibit 5). More capital means lower marginal productivity of 
capital and lower real rates. This is all the more true as 
households want to smooth consumption.1 As is often the case, 
causality might run both ways: Low productivity growth leads to 
lower rates, but lower interest rates, by allowing zombie 
companies to survive, result in lower productivity growth. 

Inequality: To the extent that the marginal propensity to save is 
higher with wealth, greater inequality causes higher savings 
and therefore lower rates. 

Preferences: Investor and consumer preferences can, of 
course, affect interest rates. Two examples come to mind: It is 
argued that publicly traded companies are guilty of short-
termism and invest less as a result, or that in response to 
“economic scarring” due to crises and pandemics we’re living in 
an age of increasing anxiety, which can lead to higher 
precautionary savings.2 In both instances, this dampens 
interest rates. 

Risk premia: As accommodative monetary and fiscal policies 
have driven more investors into risk assets and compressed risk 
premia, bonds look more and more attractive on a relative basis. 

Inflation: In theory, money is neutral and inflation does not 
affect real yields in the long run. In practice, however, one can’t 
forget about the role played by central banks. To the extent that 
central banks are behind the curve when inflation rises above 

target, their knee-jerk reaction is to tighten monetary policy and 
induce higher real rates to quell inflationary expectations, as 
was the case in the Volcker era. But when inflation is missing in 
action, lower rates, both real and nominal, ensue. 

Monetary policy: Evidently, real yields are not indifferent to 
monetary policy. Official short-term rates propagate across 
both the nominal and the real yield curves. “Postmodern” 
monetary policy is more concerned with maximizing 
employment and easing financial conditions than it is about 
inflation. It is no wonder why. Consider a world where the 
equilibrium real rate of interest is -5% and nominal interest rates 
are at their lower bound of around zero (not a completely 
ridiculous scenario considering real rates today). In this 
hypothetical world, the only way to achieve a -5% real rate is to 
run considerably higher levels of inflation.  

1  In the case of the Ramsey–Cass–Koopmans model (Appendix A.1.2) and the 
consumption model (Appendix A.1.3) with constant relative risk-aversion utility, 
preference for consumption smoothing corresponds to a θ > 1. 

2  Economic scarring resulting from the COVID-19 pandemic is a key concern 
and something that took center stage at the most recent Federal Reserve 
conference at Jackson Hole. See Kozlowski, Veldkamp and Venkateswaran 
(2020) for more details. 

Bond market net supply: Increased demand for bonds from 
capital exporters in emerging markets, an underhedged pension 
sector and quantitative easing (QE) by central banks have all put 
downward pressure on real rates. Against this background, fiscal 
incontinence means a higher bond supply and, all else equal, 
higher real yields. But the counterpoint is the famous Ricardian 

Ricardian equivalence is likely to hold, to 
some degree, which partially neutralizes 

fiscal policy, and, to that extent, nervousness 
about fiscal deficits may be overdone. 
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Source: PIMCO as of 31 December 2020. For illustrative purposes only. 

Exhibit 4: Fundamentals of fixed income 

Macro fundamental Trends and impact Net impact on rates 

Demographics
 • Higher proportion of elderly people who dissave (+)

lower  • Increased savings from workers (–)
 • Higher capital-output ratio (–) 

Productivity  • Lower productivity growth (–) lower 

Inequality  • More savings for the wealthier (–) lower 

Preferences
 • Underinvestment due to short-termism (–)

lower  • Higher precautionary savings due to economic scarring (–)

Inflation  • Inflation upward surprise (+) higher 

Monetary policy  • Further central bank cuts (–) lower 

Bond market net supply
 • Higher demand from emerging markets, pension plans and QE (–)

lower  • Higher supply due to fiscal incontinence (+)
 • Ricardian equivalence (–) 

equivalence argument: If taxpayers know that fiscal incontinence 
raises the net present value of taxes by an equivalent amount, 
then they boost precautionary savings. In reality, Ricardian 
equivalence is likely to hold, to some degree, which partially 
neutralizes fiscal policy, and, to that extent, nervousness about 
fiscal deficits may be overdone. Because quantitative easing and 
the frustrated pension demand appear overwhelming, 
consensus has it that, on balance, the net supply of "safe-haven" 
assets is negative, with real rates lower as a result. 

So where does all this leave us? Throughout the past three 
decades, most of the fundamentals – weak demographic and 
productivity growth (see Exhibit 5), lower risk premia, rising 
inequality, market anxiety, easy money, benign inflation and 
robust central bank and hedging demand for fixed income –  
drove real yields one way: down. And although the world is one 
of considerable entropy, none of the factors listed above 
appears to be reaching an obvious inflection point in the 
immediate future. 
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Exhibit 5: Average labor productivity growth in G7 countries (5-year moving average) 

Source: PIMCO and the Conference Board as of 31 December 2019
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2. LOW, LOWER RATES AND FEEDBACK LOOPS 

Rising rates are a common concern for fixed income investors; 
under this scenario, bonds are more likely to underperform 
stocks. However, the probability of this should be very low. Baz 
et al. (2020) show that for an expensive asset to sustain its 
valuation, the probability of further price increases must be 
high. In fact, this asymmetry in probability is a general feature 
of assets with highly skewed returns. 

Why is the payoff skewed? With physical currency, nominal 
short rates can’t drop much below -50 basis points (bps) – at 
which point it may be better to simply stash money beneath a 
bed. But there is no similar upper bound if rates were to rise. 

Think of a binomial model with skewed payoffs (see Exhibit 6). 
An 11-year zero-coupon bond is trading at $100. Assume for 
simplicity a flat term structure at zero percent, a zero bond risk 
premium and two possible outcomes: After a year, with 
probability p, the 10-year yield drops from zero to -50 bps and 
the price increases to $105, and with probability 1 - p, the yield 
increases to 200 bps and the price drops to $82. Then 
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Think of a binomial model with skewed payoffs (see Exhibit 6). An 11-year zero-coupon bond is trading 
at $100. Assume for simplicity a flat term structure at zero percent, a zero bond risk premium and two 
possible outcomes: After a year, with probability p, the 10-year yield drops from zero to -50 bps and the 
price increases to $105.14, and with probability 1-p, the yield increases to 200 bps and the price drops 
to $82.03. Then

100 = 82p + 105(1 − p) (1) 

and p is 22%. The probability of low rates going lower is 1-p, which is 78%. This skewed distribution with 
moderate price appreciation and severe price depreciation implies the probability of rates declining 
further is high. 

(1)

and p is 22%. The probability of low rates going lower is 1 - p, 
which is 78%. This skewed distribution with moderate price 
appreciation and severe price depreciation implies the 
probability of rates declining further is high. 

Note that the floor on nominal interest rates is caused by the 
physical nature of currencies. After all, if nominal interest rates 
are negative, a natural arbitrage is to withdraw money from 
the bank and store it at home. This would force nominal 
interest rates to a zero level. However, central banks could 
decide to go all-in on negative rates, and perhaps further down 
the line they could enforce negative rates by developing their 
own digital currencies. As it would not be possible to withdraw 
physical money in a digital world, the mechanism that 
prevented negative rates would no longer exist and there 
would be no formal limits to the upside in fixed income prices. 

Exhibit 6: Illustration of a two-period binomial 

$100 

1 −  $105  

$82  

Source: PIMCO. Hypothetical example for illustrative purposes only. 

Apart from the simple math of skewness, why would low rates 
imply a high probability of even lower rates? We discuss a few 
reasons below. 

Most central banks seem trapped in a zero interest rate world, 
with little hope of reaching escape velocity. Looking at the U.S., 
the federal funds rate was mostly above 5% from the 1970s until 
2001, although it spiked to 20% in 1981 (see Exhibit 7). Since 
2008, zero rates have been the norm. Despite an attempt to 
restore positive rates, the Federal Reserve (Fed), like a number 
of central banks, had to revert to zero rates. 

What is keeping central banks from restoring rates to 
“normal” levels? 

Most central banks seem trapped in a 
zero interest rate world, with little hope of 

reaching escape velocity. 
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Exhibit 7: Historical fed funds rate 

Source: PIMCO and Bloomberg as of 31 December 2020 

We have provided a long list of factors contributing to lower 
rates. Most central banks, while pleased with benign inflation, 
blame lower rates on the factors we listed – including aging, 
lower productivity growth, lower demand for investment goods, 
less-capital-intensive technologies, deflationary pressures in 
the labor and goods markets, the savings glut, and occasional 
market tremors.  

As always, there is what is said and what is meant. In the latter 
category, one should include everything that feeds a vicious 
cycle in which low rates get even lower. 

Consider a few dynamics:

 • As rates decline, there is an incentive for greater leverage in 
the real economy. To contain capital charges due to debt 
service payments in highly leveraged economies, central 
banks are motivated to set rates even lower (see Exhibit 8).
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Exhibit 8: Historical total U.S. debt-to-GDP ratio and fed funds rate 

Source: PIMCO and Bloomberg as of 30 September 2020
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 • With lower rates, a stagnating economy and risk assets 
rallying, the economy becomes more dependent on wealth 
effects. The sensitivity of equity prices to real yields 
increases as markets rally and risk premia fall. With lower risk 
premia and higher equity duration, the market, and hence the 
economy, become more vulnerable to higher rates. There 
again, low rates beget lower rates. 

 • As rates decline, markets rally and expected returns fall, 
investors increase their portfolio leverage to maintain 
expected portfolio returns at previous levels. Again, portfolios 
become ever more sensitive to higher rates and subsequent 
sell-offs, as sell-offs combined with higher leverage mean a 
higher risk of ruin in markets – another example of how low 
rates result in yet lower rates.

This familiar story has various incarnations, from equity 
markets in the U.S. to real estate in China and southern Europe 
and industrial metals in Australia. Its implication is simple: The 
lower the rates, the lower the probability of the economy 
reaching escape velocity. 

3. EQUITY CERTAINTIES AND THE MIRAGE OF HOPE 

Among many consensus views markets hold, a couple may 
deserve discussion: “Even though it's not cheap, equity is cheap 
to bonds,” and “Equity is certain to outperform bonds over the 
long run.” We will comment on these views in turn. 

Let us start with the belief that equity is cheap to bonds. We 
calculate the value of equity relative to Treasuries. To gauge 
relative value, we compute the difference between the real 
equity yield and the real Treasury yield – the so-called 
equity risk premium – and see how it compares with long-
term averages. 

We offer three methods to calculate the equity risk premium 
(see Appendix 2). Under the first method, we use the cyclically 
adjusted earnings yield (CAEY) as a proxy for the real equity 
yield, while the 10-year real bond yield is the difference between 
the nominal yield and expected inflation (using an exponentially 
weighted average of past inflation). The second method differs 
from the first in that we use spot earnings instead of the CAEY 
to calculate the real equity yield. Under the third method, we 
approximate the equity risk premium by the dividend yield (with 
a buyback adjustment). Exhibit 9 shows the time series for 
these three estimates. 
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Exhibit 9: Historical equity risk premium 

Source: PIMCO and Global Financial Data as of 30 November 2020
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The short of it is that under all three methods the equity risk 
premium is currently lower than its long-term average (see 
Exhibit 10). Using a long time series, Treasuries appear to be 
fair to cheap to equity despite currently trading at historically 
low yields. 

Exhibit 10: Estimated equity risk premium 
30 November 2020 

(%) 
Average 

(%) 

Method 1 (CAEY minus real bond yield) 3.5 4.3 

Method 2 (spot EY minus real bond yield) 3.2 4.8 

Method 3 (dividend yield) 1.7 4.2 

Source: PIMCO and Global Financial Data as of 30 November 2020 

We follow a similar approach to discuss the relative value of 
equity and credit. Consider the equity and credit of firms in the 
S&P 500 index. The nominal return of equity is the Treasury 
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Exhibit 11: Historical equity-credit premium 

Source: PIMCO and Bloomberg as of 30 November 2020

We turn next to the belief that equity is certain to outperform 
bonds over long horizons. Many investors have heard the 
factoid that, given enough time, stocks almost always beat 
bonds. This conventional wisdom explains the popular financial 
advice that long-term investors should invest most of their 
portfolios in stocks. Why not, if stocks will eventually come out 
on top and the investor is patient enough to stomach the short-
term volatilities? 

Using a long time series, Treasuries appear 
to be fair to cheap to equity despite currently 

trading at historically low yields. 

yield plus the equity risk premium. The nominal return of 
credit is the Treasury yield plus BAA spreads (loss-adjusted). 
The equity-credit risk premium is the difference between the 
equity risk premium and the loss-adjusted credit spread. 
Exhibits 11 and 12 show the equity-credit risk premium under 
all three methods. 

Exhibit 12: Estimated equity-credit premium 
30 November 2020 

(%) 
Average 

(%) 

Method 1 (ERP 1 – loss-adjusted spread) 2.4 3.3 

Method 2 (ERP 2 – loss-adjusted spread) 2.1 3.6 

Method 3 (ERP 3 – loss-adjusted spread) 0.6 3.0 

Source: PIMCO and Bloomberg as of 30 November 2020 
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A curious, evidence-based investor might ask: What does the 
history of U.S. markets say about this? Recent research by 
McQuarrie (2019) claims stocks outperformed investment 
grade bonds in 61.3% of the 10-year holding periods and 65.5% 
of the 30-year ones since 1793 – pretty decent for bonds, 
considering the risk difference. 

To supplement the (sometimes scant) historical evidence, we 
present below a simple model to estimate the forward-looking 
probability of outperformance for stocks versus bonds. 

PROBABILITY OF STOCKS 
OUTPERFORMING TREASURIES 

Suppose the expected return for a zero-coupon Treasury bond 
with maturity T is r. A stock has expected return μ and volatility 
σ. For simplicity, all returns are expressed on a continuously 
compounded basis. Then the probability for the stock to 
outperform the Treasury bond at the end of horizon T is 
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 φ((
μ − 1

2σ
2 − r

σ )√T) (1) 

where φ is the cumulative distribution function for the standard normal distribution (see Appendix 3). 

This probability is higher than 50% if and only if the stock’s expected geometric growth rate μ − 1
2 σ

2 is 
higher than the risk-free rate r. Under this condition, the higher the equity risk premium and the longer 
the horizon, the higher the probability of the stock outperforming. Higher stock volatility can reduce the 
probability by reducing the stock’s expected geometric growth rate as well as increasing 
noise/dispersion. 

When T = 10, r = 1%, μ = 4% and σ = 15%, the probability is 65%. Exhibit 13 shows how the 
probability changes as we perturb one input while keeping the others fixed. 

Exhibit 13: Probability of stocks outperforming Treasuries 

(2)

where Φ is the cumulative distribution function for the standard 
normal distribution (see Appendix 3). 
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There is another consideration worth mentioning: In all the 
calculations of the U.S. equity risk premium and related 
probabilities of outperformance, we take earnings and 
dividends as a given. Evidently, the profit-to-GDP ratio, being 
comfortably higher than the historical average, could easily 
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Exhibit 13: Probability of stocks outperforming Treasuries 

Source: PIMCO. Hypothetical example for illustrative purposes only.
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Exhibit 14: Historical Shiller CAPE ratio 

Source: PIMCO and Robert J. Shiller as of 31 December 2020

4. CREDIT, RELATIVELY NORMAL 

With Treasury bond prices and equity valuation ratios all trading 
in the tails, a “normal” asset class is a rarity. We claim that 
credit is relatively normal in that it is not as expensive in a world 
of compressed risk premia. 

To state the obvious, government paper is by no means the 
dominant bond category within fixed income. In the U.S., for 
example, Treasuries represent about 35% of total bonds 

revert to lower levels due to declining world trade, higher taxes 
and pressing labor demands. This is to say that the probability 
of equity outperformance over Treasuries would be drastically 
lower than indicated above if taxes, labor power and 
protectionism were on the rise.

Exhibit 14 shows the Shiller CAPE ratio since 1881. A mean-
reversion scenario from the recent level of 35 halfway to the 
historical average in 10 years without earnings growth could 
result in a roughly zero percent equity return. With this expected 
equity return, the probability for stocks to outperform 
Treasuries in our example would be only about 33%. 

Credit is relatively normal in that it is not  
as expensive in a world of compressed  

risk premia. 

outstanding. While government yields are hovering near all-time 
lows in all G7 economies, valuations for credit are not in the 
extreme tails like Treasuries and equities. As shown in Exhibit 
15, spreads for many categories of U.S. investment grade and 
high yield bonds are not as tight against their historical 
averages. Although in a post-COVID-19 world entire industries –  
ranging from retail to leisure to healthcare – are at substantially 
higher risk of default, the default rates implied by market 
spreads are multiples of historical default frequencies. For 
example, the implied default rate is 1.6% versus a 0.2% historical 
default frequency for investment grade corporate bonds, and 
4.2% versus 1.6% for corporate bonds rated BB. Similarly, 
emerging market (EM) USD categories show high implied-to-
historical-default multiples. 
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Exhibit 15: Implied versus historical realized default rates 

OAS Percentile 

HY / IG  
OAS 
ratio Percentile 

Implied 
default 40% 

recovery 

Historical 
probability 
of default 

Implied -  
realized 

Estimated 
loss 

Data start 
date 

Equity U.S. equity 307* 11.0% 2/27/1970 

Investment 
grade bonds 

Nonagency RMBS** 203 27.7% 1/31/2011 
Nonagency CMBS 126 38.3% 1/31/2008 
IG munis 41 71.9% 2.9 46.0% 0.7% 0.0% 0.7% 0.0% 1/31/1980 
IG corp. 94 15.3% 3.7 84.8% 1.6% 0.2% 1.4% 0.1% 9/30/2002 
IG credit: BBB 121 24.7% 2.9 61.7% 2.0% 0.3% 1.7% 0.2% 1/29/1993 
EM IG sov. 155 18.9% 3.8 91.3% 2.6% 0.3% 2.3% 0.2% 12/31/1993 
EM IG corp. 195 22.8% 2.5 63.3% 3.2% 0.3% 3.0% 0.2% 12/31/2001 

High yield 
bonds 

HY munis 328 49.6% 5.5% 1.2% 4.2% 0.5% 1/31/1996 
HY corp. BB 254 32.0% 4.2% 1.6% 2.6% 1.0% 9/30/2002 
HY corp. B 373 32.4% 6.2% 4.1% 2.1% 2.5% 9/30/2002 
HY ex-energy 327 15.9% 5.4% 3.2% 2.3% 1.9% 1/31/1994 
EM HY sov. 591 43.5% 9.8% 2.1% 7.7% 1.3% 12/31/1997 
EM HY corp. 496 50.5% 8.3% 3.2% 5.1% 1.9% 2/28/1994 

How about non-USD sovereigns? Here again, a naive look at 
Exhibit 16 suggests that a number of bonds live in high value 
and/or high carry quadrants.3 If currency value is approximated 
by the deviation from purchasing power parity (PPP) and carry 
by the real interest differential in the 10-year maturity bucket, 
then the expected return in a number of local markets benefits 
from both a potential appreciation of cheap currencies and a 
high real yield prevailing in these currencies. 

3  We look at carry and PPP for the Australian Dollar (AUD), British pound 
(GBP), Czech koruna (CZK), Euro (EUR), Indian rupee (INR), Japanese yen 
(JPY), Mexican peso (MXN), Norwegian krone (NOK), Polish zloty (PLN), 
Russian ruble (RUB), South African rand (ZAR), Swedish krona (SEK), Swiss 
franc (CHF) and Turkish lira (TRY).

Exhibit 16: Purchasing power parity versus real carry for 
non-U.S. sovereign bonds
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Source: PIMCO and Bloomberg as of 8 January 2021

Source: PIMCO and Bloomberg as of 8 January 2021.  *The option-adjusted spread (OAS) column for U.S. equity shows its cyclically adjusted earnings yields 
(CAEY) as of 31 December 2020.  **  Nonagency RMBS data is as of 31 December 2020. 
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For retail investors, bond taxation is particularly relevant. When 
accounting for taxes, municipal bonds provide attractive value 
on a risk-adjusted basis to U.S.-domiciled investors. Municipal 
bonds can deliver U.S.-domiciled investors consistent, federal 
tax-exempt income and, most importantly, serve as a core 
allocation and ballast for high net worth individuals subject to 
high tax rates. As Exhibit 17 shows, nontaxable BBB muni yields, 
to take an example, are mostly higher than after-tax yields on 
BBB corporates for tax rates above 27%. What is more, munis 
have experienced lower default rates relative to comparably 
rated corporate bonds, as well as low correlations to risk 
assets.4 

Exhibit 17: Yield curves of BBB muni and corporate bonds 
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Source: PIMCO and Bloomberg as of 7 January 2021. We consider the top 
federal tax rate of 40.8% (37% tax bracket + 3.8% Medicare) as well as a lower 
27.8% (24% tax bracket +3.8% Medicare). 

Over the secular horizon, federal tax-exempt income should 
remain in high demand in the U.S., given aging demographics 
and the potential that personal income tax rates are more 
likely to increase than decrease. Despite continued robust 
investor appetite for municipal bonds, the size of the market 
has remained static. We attribute this to supply-side 
dynamics. Rising pension costs and other post-employment 
benefits (OPEB) liabilities continue to crowd out infrastructure 
investments, and new federal funds for infrastructure may 
remain scarce. Finally, the market remains ripe for active 
management due to its retail nature: Valuations remain highly 
susceptible to fund flows, and, with lower broker-dealer 
inventory levels, an active approach can lead to 
outperformance potential.

5. FIXED INCOME, THE CLEANEST DIRTY SHIRT? 

A historical perspective affords bond investors few relevant 
insights about the future. Nominal bond yields below 2% have 
been exceedingly rare, occurring in approximately 1% of the 
historical dataset on developed market interest rates spanning 
16 countries.5 And that’s the good news. Compounding this lack 
of relevant data is the fact that monetary policy, a key 
determinant of interest rates, has changed dramatically over 
time, making much of the historical low yield scenarios 
irrelevant for comparison purposes. 

When you get down to brass tacks, history really offers only two 
precedents: Japan and Europe. While the initial conditions 
facing each were unique, both monetary and fiscal policy 
responses have followed the same modern playbook endorsed 
by many of their developed market peers. They serve as leading 
indicators of sorts for where the rest of us may be headed. 

To put things in perspective, 10-year Japanese government 
bond (JGB) yields have been trading below 2% since 1997 and 
below 1% since 2010. Furthermore, since 1997 three-month 
Libor has averaged a whopping 22 bps. It is fair to say that no 

When you get down to brass tacks,  
history really offers only two precedents: 

Japan and Europe. 

5  Data is from the Jordà–Schularick–Taylor Macrohistory Database (Jordà 
et al. 2016).

4  According to Moodyʼs Investors Services (2020) and data from Bloomberg
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bond market has been less interesting. Monetary policy has put 
the market on life support. Fiscal policy’s role in all of this is to 
be the defibrillator, shocking the economy back to life when 
interest rates lie near zero. Since 1997, Japan’s ratio of 
government debt to GDP has ballooned from 101.0% to 266.2%, 
and yet, despite these extraordinary measures, GDP growth has 
averaged an anemic 0.7% and inflation a shockingly low 0.2%. 
Investors have been calling for the demise of JGBs for nearly 25 
years, predicting that the immense monetary and fiscal support 
would result in tears for those brave enough to invest in these 
troubled waters where upside is minimal and downside 
arguably unmeasurable. 

So how have things played out for the Japanese bond investor? 
Exhibit 18 shows that less risky cash, here corresponding to the 
12-month Libor rate, has persistently underperformed 10-year 
government bonds over the past 22 years, to the tune of 
approximately 190 bps per year. The outperformance of 
Japanese bonds is striking: In only four years did bonds 
underperform the Japanese cash proxy. The difference 
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Exhibit 18: Annual returns of 10-year JGBs and 12-month Libor 

Source: PIMCO and Bloomberg as of 31 December 2020

between 10-year and one-year JGB yields has averaged 85 bps 
over this period, yet the outperformance has been more than 
twice this yield differential. How is this possible? The secret lies 
in the roll-down. As yields have remained low and the yield 
curve is upward sloping, Japanese bond investors have 
collected a risk premium from being invested in longer-dated 
bonds and “rolling down the curve.” The reality is that the fear 
that monetary and fiscal policy will go too far has been priced 
into Japanese bonds, and those willing to take the other side of 
this view have been rewarded rather consistently. 

The reality is that the fear that monetary and 
fiscal policy will go too far has been priced 
into Japanese bonds, and those willing to 
take the other side of this view have been 

rewarded rather consistently. 
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Instead of accepting lower rates of return from cash and bond 
investments, investors often shift their portfolios toward riskier 
equity investments to meet return objectives. “Don’t fight the 
Fed” has become the modern mantra of macro investors, and 
many argue that the unspoken goal of central banks is to create 
a bid for risk assets by crowding investors out of “risk-free” 
assets. So how has the Japanese equity investor fared in the 
world of low rates? Exhibit 19 shows that although equity 
investments had outperformed 10-year government bonds by 
the end of 2020, they possessed much higher volatility and 
more inconsistency. 

When adjusting equity and bond returns for their respective 
levels of risk, the relative performance becomes even more 
apparent. Using annual data from 1999 to 2020, corresponding 
again to the period of low interest rates in Japan, the Sharpe 
ratio on 10-year JGBs was 0.90, whereas that of Japanese 
equities was only 0.29. Although equities eventually 
outperformed bonds as of 2020, the Japanese equity investor 
faced much more risk along the way and at times suffered 
substantial underperformance relative to both bonds and cash. 
Bonds, while unloved due to the extremely low level of yields, 

were a consistent source of return as monetary policy remained 
accommodative for more than two decades. Instead of 
reducing their exposure to fixed income when yields fell, 
investors should have increased their exposure, as both the 
risk-adjusted returns and diversification properties of JGBs 
made them far more valuable in a portfolio. The irony of 
hedging is something we discuss in more detail in Section 9. 

Although European bonds have been trading at low yields for a 
much shorter time than Japanese bonds, they nonetheless serve 
as an important reminder that Japan’s situation may not be an 
outlier. For many reasons discussed in this piece, the bond 
investor may find that interest rates near zero are a black hole 
that no economy can escape. Since 2014, 10-year German Bunds 
have traded below a 1% yield; the European Central Bank (ECB) 
was one of the first central banks to embrace the concept of 
negative interest rates, lowering its deposit rate to -0.1% in June 
2014. To put it bluntly, one euro invested in cash since 31 
December 2014 would be worth less than one euro today, 
courtesy of the ECB. Investing in “risk-free” assets in Europe are 
currently guaranteed to lose money, and saving now incurs a 
storage cost.  
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Exhibit 19: Growth of 100 yen invested in cash, bonds and equities 

Source: PIMCO and Bloomberg as of 31 December 2020. Dividends were reinvested in stock investment. The 10-year JGB is proxied by the S&P 10-year JGB Futures Total 
Return Index. Equity is proxied by the Nikkei 225 Index, and cash is proxied by 12-month Japanese yen Libor.
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Exhibit 20: Growth of 100 euro invested in cash, bonds and equities 

Source: PIMCO and Bloomberg as of 31 December 2020. Dividends were reinvested in stock investment. The 10-year Bund is proxied by the Credit Suisse Euro-Bund 
Futures Total Return Index. Equity is proxied by the DAX 30 Index, and cash is proxied by the three-month euro Libor.

Like their Japanese counterparts, European bond investors 
have seen better times. It doesn’t take an astute investor to 
realize that it is time to move on to markets that offer greener 
pastures. It would seem that the only saving grace for European 
bonds is that investors may lose less money than if they 
invested in cash at negative interest rates. However, digging a 
little deeper, something interesting emerges. Much like the 
situation in Japan, the yield curve in Europe is upward sloping, 
and investors have been consistently collecting a risk premium 
for bearing the risk embedded in longer-dated bonds. 
Furthermore, much like Japan, despite bonds offering little 
upside due to extremely low yields and policy spurring investors 
to move toward riskier equity investments, equity and bonds 
have delivered mostly similar overall performance. Though we 
have only six years of data – too short a window to draw 

definitive conclusions – it is nonetheless striking that 10-year 
government bonds with yields averaging only 14 bps have been 
a more consistent source of return than both cash and equities. 

Again, adjusting equity and bond returns for their respective 
levels of risk reveals the consistency of bond returns in a low 
yield environment relative to those of equities (see Exhibit 20). 
Using quarterly data from 2015 to 2020, a period when 10-year 
Bund yields were less than 1%, the Sharpe ratio on Bunds was 
a mind-boggling 1.60, which is more than two times the 0.66 
Sharpe ratio delivered by DAX equities. Much like the situation 
in Japan, German investors who reduced their bond holdings 
due to the low yields not only reduced their portfolio 
diversification but also faced a very rough ride, only to arrive 
at a similar destination. 

6. PRIVATE CREDIT AND THE PRICE OF LIQUIDITY 

Although public credit can be characterized as relatively 
normal, private markets are anything but normal. As regulation 
continues its relentless march forward, banks are increasingly 
incentivized to lend prudently amid a tide of rising leverage and 
uncertainty. The regulatory effort that is meant to foster greater 
financial sector stability has, ironically, left many would-be 
borrowers without access to traditional bank lines of credit. 
Meanwhile, equity and bond valuations live in their tails and 
many investors are in search of greater returns to satisfy their 

Much like the situation in Japan, the yield 
curve in Europe is upward sloping, and 

investors have been consistently collecting  
a risk premium for bearing the risk 
embedded in longer-dated bonds. 
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6  See Amihud and Mendelson (1986); Acharya and Pedersen (2005); 
Hibbert, Kirchner, Kretzschmar, Li and Alexander (2009); Ang, 
Papanikolaou and Westerfield (2014); Longstaff (2017); and Baz, Stracke 
and Sapra (2019) for details. 
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Exhibit 21: Historical alpha distribution of private credit funds

Source: PIMCO, Bloomberg and Preqin as of 31 December 2019 

7  We include all funds within the categories of direct lending, distressed 
debt, mezzanine and special situations within the Preqin database. 

8  See Longstaff (2017) and Baz, Stracke and Sapra (2019).

objectives. As the story goes, private debt would seem to offer 
the perfect opportunity.

Taking the leap from public to private markets comes with a 
cost, namely liquidity risk. As investors lock up capital in private 
investments, they forgo opportunities that may arise elsewhere. 
Much has been done to try to quantify the compensation 
investors should require for bearing liquidity risk.6 These 
models are often cumbersome and unrealistic, requiring a host 
of assumptions and substantial complexity. Instead of focusing 
on the theory, it is perhaps better to understand what has been 
delivered in practice. In Exhibit 21, we plot the performance, by 
vintage year, of private debt investments7 relative to an 
equivalent investment made in duration-hedged U.S. high yield. 
Though the risks underlying private investments do not 
perfectly map to those in the high yield credit space, the public 
benchmark does provide a useful perspective on the relative 
performance offered by private debt allocations. 

While data on private debt fund performance is limited, the 
performance relative to high yield investments is nonetheless 
striking. Relative to duration-hedged U.S. high yield, alpha 
delivered by private debt managers has been consistently 

positive across vintage years and broadly aligns with the 
narrative around banking regulation. Furthermore, even the 
bottom quartile of managers have outperformed public high 
yield investments, underscoring the point that liquidity 
provisioning to these underserved markets is rewarded by 
outsize returns. Interestingly, and perhaps a validation of the 
theories underpinning appropriate compensation for liquidity 
risk, the empirical results generally align with the finding that 
investors should require 2%–4% excess returns for locking up 
capital between five and 10 years.8 

There are, however, many challenges facing private debt 
investors today. Private markets lack transparency, and their 
risks are often not well understood. Investors do not have 
access to a long history of results over multiple cycles and 
must extrapolate from a fairly small sample of funds. Last, the 
amount of capital that is migrating to the private debt space is 
substantial, which should serve to compress returns going 
forward. It goes without saying, but deal sourcing, underwriting 
standards and portfolio construction are all critical 
determinants of success. 
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exposures, thereby freeing up remaining capital to pursue other 
policy objectives. For example, investors can design capital-
efficient strategies that seek to increase portfolio return without 
necessarily increasing risk; separate alpha allocation from beta 
allocation; or increase allocation to diversifiers without taking 
capital away from other asset classes. 

Fixed income assets often play an essential role in these 
capital-efficient solutions. One obvious reason is that many 
fixed income assets are natural diversifiers for equity risk. 
Another important reason, in our view, is that the bond market 
provides much better sources of alpha than the equity market 
in general. 

Suppose that 10 years ago an institutional investor randomly 
picked an active fund to invest in and kept the investment in the 
active space in the same category if the fund was merged or 
liquidated. Exhibit 22 shows the probability that this investment 
would have outperformed the median passive peer today for 
the three largest Morningstar categories in fixed income and 
equity. More than half of the active bond mutual funds and 
ETFs beat their median passive peers after fees in two of the 
three categories over the past 10 years. In contrast, most active 
equity strategies in all three categories failed to beat their 
median passive counterparts during this period. In addition, in 
all three fixed income categories, the asset-weighted average 
returns for active funds are higher than their passive 
counterparts’ over the past 10 years — yet the opposite is true 
for equity categories. 

7. DESPERATELY SEEKING ALPHA: CAPITAL 
EFFICIENCY AND THE ACTIVE BOND ADVANTAGE 

Given the compressed risk premia across many asset classes, 
most traditional institutional portfolios are poised to deliver 
returns well below the ambitious 7% target for many investors. 
To boost returns, some resort to shifts toward riskier assets, 
often at the expense of reduced liquidity and transparency, as 
well as increased drawdown potential. 

Another common challenge investors face is the difficulty of 
accessing reliable and diverse sources of alpha. Ideally, the 
allocation of an alpha risk budget should be based on the best 
alpha opportunities available, but in reality it is often a 
byproduct of the asset allocation decision. As a result, investors 
may be forced to choose passive managers and be locked into 
“index-minus” returns, due to fees and expenses. For instance, 
consider exposure to large cap U.S. equities, a staple allocation 
in nearly all portfolios. Index funds and exchange-traded funds 
(ETFs) are often a popular choice, reflecting the challenge of 
generating consistent alpha in highly efficient markets. 

Asset allocators facing these challenges are increasingly 
embracing capital-efficient strategies. At its core, capital 
efficiency is about benefiting from the depth and liquidity of the 
asset markets. Nowadays, investors can obtain exposure to 
many asset classes through synthetic instruments such as 
futures, forwards and total return swaps. These instruments 
require minimal upfront cash to obtain desired notional 

Exhibit 22: 10-year active versus passive fund performance  

10-year average return 

Morningstar category Probability of outperformance over median passive peer Active Passive Diff (bps) 

High yield bond 76% 6.1% 5.6% +47 

Intermediate core bond 66% 4.1% 3.8% +24 

Short-term bond 44% 2.5% 2.3% +17 

Large growth 15% 15.9% 17.5% -164 

Large blend 8% 12.7% 13.9% -123 

Large value 24% 10.9% 11.5% -59 

Source: Morningstar and PIMCO as of 31 December 2020. Institutional share class for mutual funds. U.S. returns are net of fees. Figure is provided for illustrative 
purposes and is not indicative of the past or future performance of any PIMCO product.
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We believe the reason active bond strategies generally have 
been more successful than active equity strategies lies in the 
bond market’s unique structure (see more detailed discussion 
in Baz, Mattu, Moore and Guo (2017)). For example, central 
banks, insurance companies and other noneconomic investors 
make up almost half of the more than $100 trillion global bond 
market. They typically have objectives other than maximizing 
returns and therefore leave alpha potential on the table for 
active bond managers. Unlike stocks, bonds mature after a 
number of years, leading to more turnover in the bond market. 
New securities make up around 20% of bond market 
capitalization each year, and they typically are offered at 
concessional pricing to drive demand. Structural tilts can also 
be an important source of durable added value. Think about 
duration, yield curve steepeners, high yielding currencies, high 
yield credit spreads, agency and nonagency mortgage spreads, 
volatility sales and liquidity premia – just to name a few. There 
is also a wide range of financial derivatives available to active 
bond managers that allow for potentially profitable expressions 
of investment themes: currency swap basis, futures basis, 
CDS-cash basis and to-be-announced (TBA) rolls are some 
examples. In addition, active bond managers can implement 
so-called smart strategies, such as carry, value and 
momentum, that have historically displayed substantially 
positive Sharpe ratios (see, for example, Baz et al. (2015)). 
Informational efficiencies make beating equity markets more 
difficult due to fewer opportunities of material mispricing, but 
that’s not the case with fixed income. 

There is one caveat, though. As empirically identified and 
emphasized in our earlier research (for example, Mattu, 
Devarajan, Sapra and Nikalaichyk (2016)), many active fixed 
income managers may be systematically exposed to extra 
credit risk; it can explain a nonnegligible portion of their 
alphas. Whether it is alpha or beta ex ante is debatable –  
hindsight is indeed a wonderful thing. However, pure alpha 
can coexist with increased correlation with credit, as 
discussed in Baz et al. (2018). 

8. ON INFLATION, OUR INDECISION IS FINAL 

When it comes to the future of fixed income, inflation is the 
obvious game changer. On the topic of inflation trends, our 
indecision is final. Maybe it is also justified. After all, a number 
of macro models of fiscal laxity show multiple equilibria with 
both high inflation and deflation as distinct possibilities. 

It is, of course, hard to argue for inflation when entire sectors 
of the global economy – think of retail, healthcare, airlines, 
restaurants, hotels, gyms and entertainment – are 
witnessing substantial deflationary pressure. As mentioned, 
macro fundamentals are dire, valuation ratios for risk assets 
are stretched, and leverage levels are staggering. All of these 
are first-order factors on the macro menu and likely to 
produce a deflationary outcome via economic fragility, risk 
sell-offs and deleveraging. 

Over the medium to long term, however, one should keep an eye 
out for inflation, which could well be ignited in due course by 
policy – in particular, by the policy reaction to deflationary 
pressure. Consider this short list of inflation white swans: 

Over the medium to long term, however, one 
should keep an eye out for inflation, which 

could well be ignited in due course by policy. 

 • Fiscal dominance: The U.S. budget deficit for fiscal year 
2020 reached 16% of GDP, around 60% higher than the 
previous height of 9.8% in 2009, with the amount of federal 
debt held by the public as a percentage of GDP projected to 
increase drastically, from 79% in 2019 to 101% in 2020 and 
108% in 2021 – a level not seen since World War II (see 
Exhibits 23 and 24). The soaring debt burden could 
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Exhibit 24: U.S. federal debt held by the public as % of GDP 

Source: PIMCO and Haver Analytics as of 8 January 2021. Includes projected data.

incentivize the government to let inflation run hot to “inflate 
away” the debt. Worse, if and when monetary financing of 
public debt occurs, we could witness a rapid erosion of 
central bank credibility and potential hyperinflation via a 
buildup in price expectations, capital flight, or both.

 • QE, banking multiplier and M2 growth: Besides fiscal 
concerns, aggressive monetary policy adds pressure to 
inflation. In March 2020, the U.S. Fed cut the federal funds 
rate to zero and embarked on large-scale quantitative easing 

with unprecedented speed. Within five months, its balance 
sheet had expanded from $4.2 trillion at the end of February 
to almost $7 trillion at the end of July. To put this in context, 
the Fed’s balance sheet took almost seven years to increase 
from $900 billion in 2008 to $4.5 trillion in early 2015, in the 
aftermath of the global financial crisis (GFC). Exhibit 25 
shows that both the monetary base and the M2 money stock 
increased drastically in early 2020. In particular, M2 grew by 
17% between February and June 2020, with year-over-year 
growth of 23% in June, the highest in 50 years. As a 
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Exhibit 23: U.S. surplus/deficit as % of GDP

Source: PIMCO and Haver Analytics as of 8 January 2021. Includes projected data. 
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comparison, before 2020 the highest year-over-year M2 
growth was 14% in 1976. Although this rapid growth in M2 
may be due to corporations drawing on revolver loans, it is 
difficult to brush aside inflationary concerns when broad 
monetary aggregates signal a critical inflection point. 

In addition, under the fractional reserve banking system, a 
dollar created by the central bank could lead to more than a 
dollar in the banking system over time, as it could be reloaned 
and redeposited over and over again – the so-called money 
multiplier effect. While banks might choose to hoard cash to 
build excess reserves and avoid bad loans as they did post-
GFC, with the current reserve requirement at 0% and a 
relatively healthy banking sector, we could see the money 
multiplier affect broad money growth. Indeed, the jump in the 
M2 money supply may well be proof that the process has 
already started.

 • Excessive accommodation: With inflation largely tame over 
the past 20 years, one could argue that the most likely 
inflationary scenario is one of continually excessive 
accommodation in the face of persistent economic 
weakness. Simply put, the underlying economy is not healthy 
enough for the U.S. Fed to raise rates. This “Fed behind the 

curve syndrome” could lead to either a brutal bear flattening 
of the yield curve or, worse, in the absence of a central bank 
reaction, a frenzy in price expectations, with a damaging 
impact on long bonds.

Rising inflation expectations usually lead to higher nominal 
rates and, naturally, fuel investor worries about negative 
returns. However, the initial negative return is not the full 
effect of rising rates, as gradually higher coupons can trump 
capital losses. Guo and Pedersen (2014) use an intuitive 
framework to show that the net impact of rising rates is 
positive over sufficiently long horizons. Furthermore, they 
show that unless the investor can foresee a sudden rate rise, 
attempts to time the market are likely to prove futile if the 
alternative investments have low returns. Indeed, historical 
rate hikes are not always associated with negative 
performance for fixed income. For example, Exhibit 26 shows 
that as the 10-year yield rose by 800 bps, from 7.8% at the 
beginning of 1978 to the height of 15.8% by September 1981, 
the Bloomberg Barclays US Treasury Total Return Index also 
increased by 13.6% (for an annualized return of 3.5%).
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With inflation a concern for many fixed income assets, inflation-
linked bonds (ILBs) provide a straightforward hedge against 
rising inflation. The cost of hedging using inflation-linked 
securities is generally attractive at the time of this writing. For 
example, while 10-year U.S. breakeven inflation had rebounded 
from the low of 0.5% in March 2020 to 2.0% at the end of 2020, 
it is still below average realized inflation, which stands at 
around 2.6%.9 Additionally, with higher inflation tail risk in the 
wake of aggressive monetary and fiscal policy, hedging 
demand could push real yields further down. 

9. THE IRONY OF HEDGING 

One of the top reasons investors allocate to bonds is to diversify 
equity risk in their portfolios. In this section, we show that a 
potentially higher (less negative) equity beta for bonds may, 
ironically, lead to higher bond allocations when investors are 
targeting given levels of equity beta for their portfolio, either 
unconditionally or conditional upon equity drawdowns. 

Over the past few decades, bonds have had low correlation with 
stocks and, perhaps more importantly, typically delivered 
positive returns when equity sold off. Baz et al. (2019) show 
that, while the stock-bond correlation has changed over time, 
with an average close to zero, bond returns have been positive 
in nearly all recessions since 1952, even during periods when 
stock-bond correlations were positive. Furthermore, Baz et al. 
(2019) show that bonds also have a negative equity beta 
conditional on equity drawdown, suggesting that bond returns 
are expected to increase with the size of equity drawdowns. 

While duration could still have a negative correlation with equity, 
its hedging efficacy could be reduced because of the lower 
yield level today. Though the zero lower bound may be 
breached and yield could become negative, it shouldn’t be a 
surprise that, with the 10-year yield sitting at around 100 bps 
today, yield has less room to move and duration returns are less 
volatile. Duration’s equity beta can be written as
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bps today, yield has less room to move and duration returns are less volatile. Duration’s equity beta can 
be written as 

 𝛽β = ρ σdur
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Assume correlation and equity volatility remain the same, less volatile duration returns thus imply less 
negative beta. How does this impact the asset allocation decision? Perhaps counterintuitively. If the 
investor uses bonds to achieve portfolio diversification, then it might be optimal for them to allocate 
more to bonds when their hedging efficacy declines. 

Let’s consider an example in which the investor allocates between stocks and bonds such that the 
portfolio has the highest return possible while its conditional beta is below a certain threshold. Exhibit 
27 presents two scenarios: 

Exhibit 27: Conditional stocks and bonds return statistics assumptions 

 Conditional 
correlation 

Conditional 
duration vol 

Conditional 
equity vol 

Conditional 
beta 

Scenario A -0.25 0.82% 8.4% -0.024 

Scenario B -0.25 0.49% 8.4% -0.015 

Source: PIMCO. Hypothetical example for illustrative purposes only. 

Exhibit 28 shows the optimal allocations for equities and bonds for various beta targets.9 In Scenario B, 
even though bonds are not as good a diversifier as in Scenario A, they still do a better job than the 
equity alternative, which has a conditional beta of 1 by construction. Because of this, to achieve the 
same level of portfolio diversification one needs to allocate more, rather than less, to bonds. 

Exhibit 28: Allocations to equity and bond with various conditional beta targets 

                                                           
9 We use long Treasuries as a proxy for the bond portion of the portfolio. Specifically, we scale the duration returns 
by a factor of 18, which corresponds to the duration of the Bloomberg Barclays Long Treasury index. 
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 are the volatilities for duration and  
equity, respectively.

9  Average year-on-year seasonally adjusted CPI inflation rate  is calculated using  
monthly data from January 1985 to November 2020.
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Assuming correlation and equity volatility remain the same, 
less volatile duration returns thus imply less negative beta. How 
does this impact the asset allocation decision? Perhaps 
counterintuitively. If investors use bonds to achieve portfolio 
diversification, then it might be optimal for them to allocate 
more to bonds when their hedging efficacy declines. 

Let’s consider an example in which the investor allocates 
between stocks and bonds such that the portfolio has the 
highest return possible while its beta is below a certain 
threshold. Exhibit 27 presents two scenarios: 

Exhibit 27: Assumptions on stock and bond return statistics  

Correlation Duration vol Equity vol Beta 
Scenario A -0.25 0.82% 8.4% -0.024 

Scenario B -0.25 0.49% 8.4% -0.015 

Source: PIMCO. Hypothetical example for illustrative purposes only. 

Exhibit 28 shows the optimal allocations for equities and bonds 
for various beta targets.10 In Scenario B, even though bonds are 
not as good a diversifier as in Scenario A, they still do a better 
job than the equity alternative, which has a beta of 1 by 
construction. Because of this, to achieve the same level of 
portfolio diversification one needs to allocate more, rather than 
less, to bonds. 
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Source: PIMCO. Hypothetical example for illustrative purposes only.

10  We use long Treasuries as a proxy for the bond portion of the portfolio. 
Specifically, we scale the duration returns by a factor of 18, which corresponds 
to the duration of the Bloomberg Barclays Long Treasury Index.
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10. ASSET ALLOCATION AND MACRO SCENARIOS 

Obviously, not all investors target given levels of equity beta 
for their portfolios. Even among those who do, there might be 
other, competing objectives and alternative equity risk 
diversifiers to consider. In this section, we look at the role of 
fixed income in asset allocation in a more heuristic way and 
show how an optimal portfolio may change for different 
macro scenarios. 

The mean-variance-analysis framework of Markowitz (1952) is 
the foundation of modern portfolio theory and by far the most 
popular asset allocation model. The capital asset pricing model 
(CAPM) was derived from this framework with additional 
equilibrium assumptions. Despite mixed empirical evidence, 
CAPM equilibrium provides helpful neutral starting points for 
expected excess returns for assets globally (Black and 
Litterman (1992)). 

We start by constructing a proxy for the global investable 
market portfolio, consisting of 11 broad asset classes for a U.S. 
investor (see Exhibit 29). We can derive the implied excess 
returns using a reverse optimization process: 
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capitalization weights; and λ is the market risk-aversion 
coefficient, which characterizes the risk/return trade-off at the 
market level. Note that the implied return vector is only unique 
up to a multiplier, the unknown λ, and therefore requires a 
normalization condition. 

Now posit there are four possible macroeconomic scenarios 
for the next five years (see Exhibit 30). The investor has 
subjective views on the probabilities of the scenarios. Because 
each scenario has its own return and risk implications, how can 
the investor express their views on the likelihood of each 
scenario? One heuristic approach is to find the optimal portfolio 
for each scenario, based on the conditional expected returns 
and covariance, and average the portfolios using the subjective 
probabilities as weights.11 

11  A more common alternative approach is to focus on the unconditional 
expected returns and covariance and perform one mean-variance 
optimization (Appendix 5 provides such an example). However, the 
heuristic approach tends to produce more diversified and stable portfolios, 
and allows investors to express their views by specifying probabilities on 
these scenarios.

Exhibit 30: Macroeconomic scenarios 
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Source: PIMCO. Hypothetical example for illustrative purposes only.

Exhibit 29: Asset classes and implied returns 

Asset class Weight Implied return 
U.S. equity 26% 5.8% 
Non-U.S. DM equity 12% 6.3% 
EM equity 11% 6.9% 
US Agg 16% 0.5% 
Global Agg ex-US 23% 1.5% 
Global high yield 2% 3.4% 
Global ILB 2% 1.8% 
Commodity 2% 4.2% 
Real estate 4% 5.2% 
Private equity 3% 8.3% 
Private debt 1% 3.2% 

Source: Bloomberg, Preqin and PIMCO as of December 2020. Hypothetical 
example for illustrative purposes only. Implied returns are normalized such 
that the portfolio return is equal to that under PIMCO capital market assumptions 
(as of December 2020). Non-U.S. assets are unhedged. Appendix 4 provides a 
list of proxies for the assets. Figure is provided for illustrative purposes and is 
not indicative of the past or future performance of any PIMCO product. 
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To do that, we first assume the CAPM-implied returns are 
consistent with the market expectations for future real GDP 
growth and inflation. Then we can estimate the conditional 
expected asset returns under each scenario, based on 
estimated sensitivities of risk factors to real GDP growth and 
inflation surprises versus market expectations. The heat map in 
Exhibit 31 shows the changes in expected returns relative to the 
implied returns by asset and scenario. Intuitively, global ILBs 
and commodities respond positively to inflationary scenarios, 
but nominal bonds respond negatively. Equities perform better 
in high growth and low inflation environments, and vice versa. 

However, a higher return does not necessarily translate to a 
higher weight under that scenario. What matters most is relative 
returns across assets. With the estimated scenario-specific 
expected returns and covariance, we find the optimal portfolio 
with the maximum Sharpe ratio under two types of constraints: 
long-only and long/short. Exhibit 31 shows the asset tilts relative 
to the market portfolio under the two sets of constraints. The 
long-only constraints restrict the downward tilts for assets with 
small weights in the market portfolio, causing asymmetry in the 
ranges of potential tilts. The long/short version allows 
symmetric +/- 10% tilts for each asset, and the overweight/ 
underweight is less likely to be truncated asymmetrically. 

Finally, we estimate the weighted average of the scenario-
specific asset tilts with the investor’s subjective probabilities for 
the scenarios. There are differences between the long-only and 
long/short versions, but directionally they both tilt toward 
assets with inflation protection, such as global ILBs and 
commodities. This is not surprising, given the investor’s 
subjective view on inflationary scenarios (60% total probability). 
Despite the high probability of inflation assumed, the average 
portfolio overweights nominal bonds against equities. This is 
due to the bearish view on GDP growth (75% probability of low 
growth), which favors bonds versus the procyclical assets. 

One caveat is that the optimal portfolio weights can be sensitive 
to the model assumptions, which is well-known for mean-
variance optimization. In addition, the constraints affect the 
optimal portfolios, in the magnitude and occasionally even the 
direction of the tilts. For example, in Scenario IV the optimizer 
may want to underweight global high yield, global ILBs and 
commodities as much as allowed. However, the long-only 
constraints mean there is very little room to do so and therefore 
force the optimizer to underweight core bonds in order to 
overweight some of the procyclical assets. 

Asset tilts

Δ(Expected return) Long-only Long/short 

Asset class I II III IV I II III IV Avg I II III IV Avg 

U.S. equity 

Non-U.S. DM equity 

EM equity 

US Agg 

Global Agg ex-US 

Global high yield 

Global ILB 

Commodity 

Real estate 

Private equity 

Private debt 

Exhibit 31: Expected returns and asset tilts under various scenarios 

Bar lengths represent the amount we tilt the corresponding asset under different scenarios (green indicates an increased allocation, and red means a 
decreased allocation). 
Source: PIMCO. Hypothetical example for illustrative purposes only. Figure is provided for illustrative purposes and is not indicative of the past or future 
performance of any PIMCO product.
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Appendix 1: Mostly supportive fundamentals 

A.1.1: Interest rates in the Solow−Swan model 

Start with a profit-maximizing firm with standard production function F(K, L) = Kα(AL)1−α. . 

In equilibrium, the return on capital equals the marginal 
productivity of capital, which is given by: 
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R = ∂F =  αKα−1(AL)1−α =  α Y . ∂K K
(A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

Also, suppose labor (L), or the number of workers, and technology grow at rates n and g, that is, At =
A0egt and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in K̇ = sY − δK and we obtain k̇= sy − (δ + n + g)k where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 
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If the capital stock (K) depreciates at a constant rate δ and the 
households save a fixed fraction (s) of the total output, then the 
dynamic of capital stock follows:  K=sY − δK. 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: ̇ . 

Also, suppose labor (L), or the number of workers, and technology grow at rates n and g, that is, At =
A0egt and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in K̇ = sY − δK and we obtain k̇= sy − (δ + n + g)k where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

Also, suppose labor (L), or the number of workers, an d 
technology grow at rates n and g – that is,  At = A0egt  and  
 Lt = L0ent.. 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

Also, suppose labor (L), or the number of workers, and technology grow at rates n and g, that is,
A0egt and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in K̇ = sY − δK and we obtain k̇= sy − (δ + n + g)k where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

pose labor (L), or the number of workers, and technology grow at rates n and g, that is, At =
and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in K̇ = sY − δK and we obtain k̇= sy − (δ + n + g)k where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

Also, supp L or the number of workers, and technology grow at rates n and g, that is, At =
A0egt and

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in K̇ = sY − δK and we obtain k̇= sy − (δ + n + g)k where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

Define k = K / AL and y = Y / AL as capital and output per 
effective worker. Then k will grow at 

 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

Also, suppose labor (L), or the number of workers, and technology grow at rates n and g, that is, At =
A0egt and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k = K
AL − k(n + g).̇ ̇

(A.2) 

Plug in K̇ = sY − δK and wK = sY − δK  
̇ − (δ + n + g)k where y =  Y/AL is output per effective 

worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

 (A.2)

Plug in  and we obtain  k= sy − (δ + n + g)k  
where y = Y/AL is output per effective worker. At the steady 
state, capital per unit of effective labor does not change – that 
is, sy = (δ + n + g)k. Therefore, at the steady state: 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

Also, suppose labor (L), or the number of workers, and technology grow at rates n and g, that is, At =
A0egt and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in ̇ and we obtain k̇= sy − (δ + n + g)k where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

Also, suppose labor (L), or the number of workers, and technology grow at rates n and g, that is, At =
A0egt and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in K̇ = sY − δK and we obtain ̇ where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = k

y = s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

R = ∂F
∂K =  αKα−1(AL)1−α =  α Y

K . (A.1) 

If the capital stock (K) depreciates at a constant rate δ and the households save a fixed fraction (s) of the 
total output, then the dynamic of capital stock follows: K̇=sY − δK. 

Also, suppose labor (L), or the number of workers, and technology grow at rates n and g, that is, At =
A0egt and Lt = L0ent.

Define k =  K/AL and y =  Y/AL as capital and output per effective worker. Then k will grow at 

k̇ = K̇
AL − k(n + g). (A.2) 

Plug in K̇ = sY − δK and we obtain k̇= sy − (δ + n + g)k where y =  Y/AL is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, sy =
(δ + n + g)k. Therefore, at the steady state: 

K
Y = ky =

s
δ + n + g (A.3) 

and the marginal productivity of capital, or return on capital, is: 

R = α δ + n + g
s . (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function Y(t) =
F(K(t), A(t)L(t)). Each period, the firm pays wage W(t) and rental rate R(t) for each unit of labor and 
capital it uses. Define capital and output per unit of effective labor k = K

AL , y = Y
AL. From the firm’s

perspective, we can derive the following two optimality conditions: 

R(t) = FK(K(t), A(t)L(t)) (A.5) 

W(t) = FL(K(t), A(t)L(t)) (A.6) 

As in the Solow–Swan model, we assume labor (L) and technology (A) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of δ. 

Household perspective 

 (A.3)

and the marginal productivity of capital, or return on capital, is: 

 

34 

In equilibrium, the return on capital equals the marginal productivity of capital is given by: 

= =  −1( )1− =  . (A.1) 

If the capital stock (K) depreciates at a constant rate  and the households save a fixed fraction ( ) of the 
total output, then the dynamic of capital stock follows: ̇ = − . 

Also, suppose labor (L), or the number of workers, and technology grow at rates  and , that is, =
0  and = 0 .

Define =  /  and =  /  as capital and output per effective worker. Then  will grow at 

̇ =
̇

( ). (A.2) 

Plug in ̇ = −  and we obtain ̇= − ( + + )  where =  /  is output per effective 
worker. At the steady state, capital per unit of effective labor does not change – that is, =
( + + ) . Therefore, at the steady state: 

= =
+ +

(A.3) 

and the marginal productivity of capital, or return on capital, is: 

=
+ +

. (A.4) 

A.1.2 Ramsey−Cass−Koopmans model

The setup of this model is mostly similar to the Solow–Swan model, with one major difference: Instead 
of assuming a constant saving rate, consumption and saving are determined by the households.  

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale production function ( ) =
( ( ), ( ) ( )). Each period, the firm pays wage ( ) and rental rate ( ) for each unit of labor and 

capital it uses. Define capital and output per unit of effective labor = , = . From the firm’s

perspective, we can derive the following two optimality conditions: 

( ) = ( ( ), ( ) ( )) (A.5) 

( ) = ( ( ), ( ) ( )) (A.6) 

As in the Solow–Swan model, we assume labor ( ) and technology ( ) grow at rates n and g, as in 
Equations A.5 and A.6, and the capital stock (K) depreciates at a constant rate of . 

Household perspective 

 (A.4)

A.1.2 Ramsey–Cass–Koopmans model 

The setup of this model is mostly similar to the Solow–Swan 
model, with one major difference: Instead of assuming a 
constant saving rate, consumption and saving are determined 
by the households. 

Firm perspective 

Assume a profit-maximizing firm with a constant return to scale 
production function Y(t) = F (K(t), A(t)L (t)). Each period, the 
firm pays wage W(t) and rental rate R(t) for each unit of labor 
and capital it uses. Define capital and output per unit of 
effective labor k = K/ AL, y = Y/ AL. From the firm’s perspective, 
we can derive the following two optimality conditions: 

 R(t) = FK (K(t), A(t)L (t)) (A.5)

 W(t)=FL (K(t), A(t)L (t)) (A.6)

As in the Solow–Swan model, we assume labor (L) and 
technology (A) grow at rates n, g, and the capital stock (K) 
depreciates at a constant rate of δ.
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Household perspective 

Suppose C(t) is the time t per capita consumption. The 
aggregate budget constraint for households is given by 

(A.7)K(t) = W(t)L(t) + r(t)K(t) − C(t)L(t)  

where r(t) = R(t) – δ is the return on capital for the households 
and  dK(K(t) t)= dt .  This equation tells us that the change in 
capital stock (additional saving) equals labor plus capital 
incomes less consumption. 

By definition, 
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where r(t) = R(t) − δ is the return on capital for the households and K̇(t) = dK(t)
dt . This equation tells 

us that the change in capital stock (additional saving) equals labor plus capital incomes less 
consumption. 

By definition, 

 k̇(t) = K̇(t)
A(t)L(t) − K(t)

A(t)L(t) (L̇(t)
L(t) + Ȧ(t)

A(t)) (A.8) 

 

Plug Equation A.7 into Equation A.8 we can rewrite the budget constraint as 

 k̇(t) = (r(t) − n − g)k(t) + w(t) − c(t) (A.9) 

where c(t) = C(t)
A(t)  and w(t) = W(t)

A(t) . To impose the No-Ponzi condition, we also require 

lim
t→∞

k(t)e− ∫ (r(s)−n−g)dst
0 ≥ 0. 

Consider the following utility function as  

 Uoriginal =  ∫ e−ρtu(C(t))L(t)dt
∞

0
 (A.10) 

where ρ is the subjective discount rate and u(C) is the instantaneous utility function given by  

 u(C(t)) = C(t)1−θ

1 − θ  θ > 0, θ ≠ 1. (A.11) 

 Uoriginal can thus be written as 

 Uoriginal = A0
1−θL0 ∫ e−(ρ−n−g(1−θ))t c(t)1−θ

1 − θ dt
∞

0
 (A.12) 

Because A0
1−θL0 is just a constant, we consider the optimization instead: 

 max
{ct}

U = ∫ e−ρ̂tu(c(t))dt
∞

0
    (8) (A.13) 

with ρ̂ = ρ − n − g(1 − θ), and subject to budget constraint k̇(t) = (r(t) − n − g)k(t) + w(t) −
c(t). 

It can be shown that the optimality conditions for this problem are given by  

 u′(c(t)) − μ(t) = 0 (A.14) 
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∞

0
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 max
{ct}
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0
    (8) (A.13) 
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c(t). 
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 u′(c(t)) − μ(t) = 0 (A.14) 
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A(t)) (A.8) 

 

Plug Equation A.7 into Equation A.8 we can rewrite the budget constraint as 

 k̇(t) = (r(t) − n − g)k(t) + w(t) − c(t) (A.9) 

where  and w(t) = W(t)
A(t) . To impose the No-Ponzi condition, we also require 

lim
t→∞

k(t)e− ∫ (r(s)−n−g)ds0 ≥ 0. 

Consider the following utility function as  

 Uoriginal =  ∫ e−ρtu(C(t))L(t)dt
∞

0
 (A.10) 

where ρ is the subjective discount rate and u(C) is the instantaneous utility function given by  

 u(C(t)) = C(t)1−θ

1 − θ  θ > 0, θ ≠ 1. (A.11) 

 Uoriginal can thus be written as 

 Uoriginal = A0
1−θL0 ∫ e−(ρ−n−g(1−θ))t c(t)1−θ

1 − θ dt
∞

0
 (A.12) 

Because A0
1−θL0 is just a constant, we consider the optimization instead: 

 max
{ct}

U = ∫ e−ρ̂tu(c(t))dt
∞

0
    (8) (A.13) 

with ρ̂ = ρ − n − g(1 − θ), and subject to budget constraint k̇(t) = (r(t) − n − g)k(t) + w(t) −
c(t). 

It can be shown that the optimality conditions for this problem are given by  

 u′(c(t)) − μ(t) = 0 (A.14) 

35 
 

Suppose C(t) is the time t per capita consumption. The aggregate budget constraint for the households 
is given by 

 K̇(t) = W(t)L(t) + r(t)K(t) − C(t)L(t) (A.7) 

where r(t) = R(t) − δ is the return on capital for the households and K̇(t) = dK(t)
dt . This equation tells 

us that the change in capital stock (additional saving) equals labor plus capital incomes less 
consumption. 

By definition, 

 k̇(t) = K̇(t)
A(t)L(t) − K(t)

A(t)L(t) (L̇(t)
L(t) + Ȧ(t)
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A(t)) (A.8) 

 

Plug Equation A.7 into Equation A.8 we can rewrite the budget constraint as 

 k̇(t) = (r(t) − n − g)k(t) + w(t) − c(t) (A.9) 

where c(t) = C(t)
A(t)  and w(t) = W(t)

A(t) . To impose the No-Ponzi condition, we also require 

lim
t→∞

k(t)e− ∫ (r(s)−n−g)dst
0 ≥ 0. 

Consider the following utility function as  

 Uoriginal =  ∫ e−ρtu(C(t))L(t)dt
∞

0
 (A.10) 

where ρ is the subjective discount rate and u(C) is the instantaneous utility function given by  

 u(C(t)) = C(t)1−θ

1 − θ  θ > 0, θ ≠ 1. (A.11) 

 Uoriginal can thus be written as 

 Uoriginal = A0
1−θL0 ∫ e−(ρ−n−g(1−θ))t c(t)1−θ

1 − θ dt
∞

0
 (A.12) 

is just a constant, we consider the optimization instead: 

 max
{ct}

U = ∫ e−ρ̂tu(c(t))dt
∞

0
    (8) (A.13) 

with ρ̂ = ρ − n − g(1 − θ), and subject to budget constraint k̇(t) = (r(t) − n − g)k(t) + w(t) −
c(t). 

It can be shown that the optimality conditions for this problem are given by  

 u′(c(t)) − μ(t) = 0 (A.14) 

35 
 

Suppose C(t) is the time t per capita consumption. The aggregate budget constraint for the households 
is given by 

 K̇(t) = W(t)L(t) + r(t)K(t) − C(t)L(t) (A.7) 

where r(t) = R(t) − δ is the return on capital for the households and K̇(t) = dK(t)
dt . This equation tells 

us that the change in capital stock (additional saving) equals labor plus capital incomes less 
consumption. 

By definition, 

 k̇(t) = K̇(t)
A(t)L(t) − K(t)

A(t)L(t) (L̇(t)
L(t) + Ȧ(t)
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Suppose C(t) is the time t per capita consumption. The aggregate budget constraint for the households 
is given by 

 K̇(t) = W(t)L(t) + r(t)K(t) − C(t)L(t) (A.7) 

where r(t) = R(t) − δ is the return on capital for the households and K̇(t) = dK(t)
dt . This equation tells 

us that the change in capital stock (additional saving) equals labor plus capital incomes less 
consumption. 

By definition, 

 k̇(t) = K̇(t)
A(t)L(t) − K(t)

A(t)L(t) (L̇(t)
L(t) + Ȧ(t)

A(t)) (A.8) 

 

Plug Equation A.7 into Equation A.8 we can rewrite the budget constraint as 

 k̇(t) = (r(t) − n − g)k(t) + w(t) − c(t) (A.9) 

where c(t) = C(t)
A(t)  and w(t) = W(t)

A(t) . To impose the No-Ponzi condition, we also require 

lim
t→∞

k(t)e− ∫ (r(s)−n−g)dst
0 ≥ 0. 

Consider the following utility function as  

 Uoriginal =  ∫ e−ρtu(C(t))L(t)dt
∞

0
 (A.10) 

where ρ is the subjective discount rate and u(C) is the instantaneous utility function given by  

 u(C(t)) = C(t)1−θ

1 − θ  θ > 0, θ ≠ 1. (A.11) 

 Uoriginal can thus be written as 

 Uoriginal = A0
1−θL0 ∫ e−(ρ−n−g(1−θ))t c(t)1−θ

1 − θ dt
∞

0
 (A.12) 

Because A0
1−θL0 is just a constant, we consider the optimization instead: 

 max
{ct}

U = ∫ e−ρ̂tu(c(t))dt
∞

0
    (8) (A.13) 
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 ρ̂μ(t) − μ(t)(r(t) − n − g) =  μ(t)̇  (A.15) 

with the transversality condition lim
t→∞

k(t)μ(t)e−(ρ−n−(1−θ)g)t = 0. 

Differentiating Equation A.14 with respect to t and divided by μ(t) on both sides: 

 u′′(c(t))
u′(c(t))

× ċ(t) = μ̇(t)
μ(t) . (A.16) 

Plug in Equation A.15 and ρ̂ and note that u
′′(c(t))

u′(c(t)) = −θc(t)−1 we get: 

 ċ(t)
c(t) = r(t) − ρ − gθ

θ . (A.17) 

At the steady state, ċ(t) = 0 which leads to  

 r∗ = ρ + gθ. (A.18) 

 

A.1.3: Interest rates in a basic consumption model 

Consider an agent maximizes lifetime consumption: 

 max
Ct,Ct+1

U(Ct) + e−ρ Et[U(Ct+1)] (A.19) 

subject to Ct + e−r Ct+1 = W. 

Standard Lagrangian optimization yields the following result: 

 er = 1

Et [e−ρ U′(Ct+1)
U′(Ct) ]

, (A.20) 

 

Hence r = −lnEt(Mt+1) with Mt+1 ≡ e−ρ U′(Ct+1)
U′(Ct) . 

Assume a CRRA utility of consumption U(Ct) = Ct1−θ

1−θ , we get 

 Et [e−ρ U′(Ct+1)
U′(Ct) ] = e−ρE[(Ct+1

Ct
)−θ]. (A.21) 

Now assume that consumption follows a lognormal random walk: Ct+1 = Cteg−σ2
2 +σ∈.11 Recalling that 

                                                           
11 The pricing equation A.21 still holds with aggregate stochastic consumption; see, for example, the representative 
agent framework in Lucas (1978). 

 (A.15)

with the transversality condition  lim k(t)μ(t)e−(ρ−n−(1−θ)g)t = 0.
t→∞
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 (A.16)

Plug in Equation A.15 and  
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 ċ(t)
c(t) = r(t) − ρ − gθ

θ . (A.17) 
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 (A.17)

At the steady state, , c(t) = 0  which leads to 
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× ċ(t) = μ̇(t)
μ(t) . (A.16) 

Plug in Equation A.15 and ρ̂ and note that u
′′(c(t))

u′(c(t)) = −θc(t)−1 we get: 
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2 2θ σ
Et(e−θσ∈) = e 2  it follows immediately that 

 r = ρ + θg − θ(θ + 1)σ2
2 . (A.22) 

 

A.1.4: Long and Plosser simple RBC model 

In this model, we assume there is a representative agent that maximizes time 0 discounted utility of 
future consumptions: 

 maxE0 [∑ βtπtu(ct)
∞

t=0
] (A.23) 

where u() is a utility function, ct is consumption at time t, βt represents a time preference between 
utility consumed today versus time t, and πt represents the probability the agent survives up until time 
t. 

The agent can choose to either consume today or invest in order to consume in the future. The budget 
constraint facing the agent is as follows:  

 ct + kt+1 ≤ ztktα ≡ yt (A.24) 

where kt+1 corresponds to the amount of consumption goods invested for use in production tomorrow 
and production occurs according to the technology ztktα. Here zt represents a “technology shock” that 
impacts overall production and yt corresponds to overall production obtained from investing kt units of 
capital. As the agent will always consume and invest all production, the budget constraint is binding. The 
agent must choose the optimal level of capital (which also determines consumption) in order to 
maximize the discounted value of utility. Substituting ct = ztktα − kt+1 and differentiating with respect 
to kt+1 gives the optimal decision for investing at time t 

 u′(ct) = E [βπu′(ct+1) [α
yt+1
kt+1

]] (A.25) 

Under log utility, rearranging terms we get  

 kt+1
ct

= αβπE [yt+1ct+1
] (A.26) 

so that the ratio of investment to consumption today is a constant fraction of the expected ratio of 
output to consumption tomorrow. This is one of the rare cases where the economy has a nice closed- 
form solution. Letting w represent the fraction of output allocated toward consumption today (and 1–w 
correspond to the fraction of output allocated toward investment), we can solve this problem for w  

 1 − w
w = αβπ 1w , (A.27) 

, i, t follows immediately that 
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which implies that w = 1 – αβπ and therefore  ct = (1 − αβπ)yt  
and  kt+1 = (αβπ)yt. The equilibrium real interest rate is one 
whereby one unit of investment today pays off 1 + r∗

t units of 
consumption in every state of the world tomorrow: 
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which implies that w = 1 − αβπ and therefor and kt+1 = (1 − αβπ)yt. The 
equilibrium real interest rate is one whereby o  today pays off 1 + rt

∗ units of
consumption in every state of the world tomorrow:  

1 = αβπE [ ct
ct+1

(1 + rt
∗)] . (A.28) 

From this relationship, we can see that:  

• An increase in longevity/survival π results in a lower r∗.
• An increase in the value of utility tomorrow versus today, β, results in a lower r∗.
• A technology shock that makes the economy more productive (increasing consumption growth)

increases r∗.

A.1.5: Interest rate relationship with different factors in different models

Source: PIMCO 
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(A.28)

From this relationship, we can see that: 

•  An increase in longevity/survival π results in a lower r*. 

•  An increase in the value of utility tomorrow versus today, β, 
results in a lower r*. 

•  A technology shock that makes the economy more 
productive (increasing consumption growth) increases r*.
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APPENDIX 2: PROXIES FOR THE EQUITY  
RISK PREMIUM 

First, we show why the real equity yield is equal to the earnings 
yield under certain conditions, using a framework of the Gordon 
growth model. 

A stock index price P is the present value of its dividends, with 
the initial dividend D growing at a real rate g and discounted at a 
real equity yield r: 

39 
 

First, we show why the real equity yield is equal to the earnings yield under certain conditions, using a 
framework of the Gordon growth model. 

A stock index price P is the present value of its dividends, with the initial dividend D growing at a real 
rate g and discounted at a real equity yield r: 

 P =  ∫ Degte−rtdt = D
r − g

∞ 

0
. (A.29) 

Hence, 

 r = D
P + g. (A.30) 

With R designating the real bond yield, the equity risk premium is 

 ERP = r − R = D
P + g − R. (A.31) 

With i the real internal rate of return and b the earnings retention rate, (b = ER
E  where ER is the retained 

earnings and E is the earnings), g can be written as 

 g = bi. (A.32) 

This is true, as dividend growth is equal to earnings growth, g = dE
E  and earnings grow at the real internal 

rate of return achieved on retained earnings, so i =dE
ER

. 

Firms will keep investing until the real internal rate of return matches the real equity yield; hence, i = r. 
We thus have 

 P = D
r − br = D

r(1 − b) = E
r . (A.33) 

Therefore, 

 E
P = r. (A.34) 

To the extent that real dividend growth, the real bond yield and real GDP growth are equal, the equity 
risk premium can be approximated by the dividend yield as well. 

 

Appendix 3: Probability of equity outperforming Treasuries 

Assume the value of the stock (including any continuously paid and reinvested dividend) St follows a 
geometric Brownian motion: 

 dSt =  μStdt +  σStdWt (A.35) 

where Wt follows a standard Brownian motion. Then we have 

 (A.29)

Hence, 
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To the extent that real dividend growth, the real bond yield and 
real GDP growth are equal, the equity risk premium can be 
approximated by the dividend yield as well. 

APPENDIX 3: PROBABILITY OF EQUITY 
OUTPERFORMING TREASURIES 

Assume the value of the stock (including any continuously paid 
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A.1.5: Interest rate relationship with different factors in different models  

Solow–Swan 
Ramsey–Cass– 

Koopmans 
Basic  

consumption model 
Long and Plosser  
simple RBC model 

α Elasticity of output with respect to capital

δ Capital depreciation rate + 

n  Labor growth rate + 

g  Technology growth rate/ consumption growth rate + + + 

s  Saving rate – 

ρ Time preference discount rate + +

θ Degree of relative risk aversion
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which implies that w = 1 − αβπ and therefore ct = (1 − αβπ)yt and kt+1 = (1 − αβπ)yt. The 
equilibrium real interest rate is one whereby one unit of investment today pays off 1 + rt

∗ units of
consumption in every state of the world tomorrow:  

1 = αβπE [ ct
ct+1

(1 + rt
∗)] . (A.28) 

From this relationship, we can see that:  

• An increase in longevity/survival π results in a lower r∗.
• An increase in the value of utility tomorrow versus today, β, results in a lower r∗.
• A technology shock that makes the economy more productive (increasing consumption growth)

increases r∗.
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APPENDIX 5: PORTFOLIO OPTIMIZATION BASED 
ON UNCONDITIONAL INPUTS – AN EXAMPLE 

Suppose an investor has views on the expected returns of 
assets that are unconditional on scenarios. Depending on their 
confidence in the views relative to the CAPM-implied returns, 
the investor can blend the information from the market portfolio 
and their views to come up with a set of blended expected 
returns (Black and Litterman 1992). Exhibit A5.1 shows an 
example of when the investor has the same confidence (or 
uncertainty) in CAPM-implied returns and the views. 

where Wt follows a standard Brownian motion. Then we have 

40 
 

 ST = S0e(μ−
1
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2)T+σ√TZ (A.36) 

where Z follows a standard normal distribution. 

Assume the value of the zero-coupon Treasury bond with maturity T follows: 

 BT = B0erT. (A.37) 

The probability for the stock to outperform the T-bond at the end of the horizon T is 
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where φ is the cumulative distribution function for the standard normal distribution. 
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Asset class Proxy

U.S. equity Russell 3000
Non-U.S. DM equity MSCI world ex-U.S. index
EM equity MSCI emerging markets index
U.S. IG bonds Bloomberg Barclays U.S. aggregate index
Non-U.S. IG bonds BBG BC global agg ex-USD index
Global high yield BBG BC global high yield index
Global ILB Bloomberg Barclays world govt ILB
Commodity Bloomberg commodity TR index
Real estate PIMCO private real estate model
Private equity PIMCO private equity model
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The probability for the stock to outperform the T-bond at the 
end of the horizon T is 
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where Φ is the cumulative distribution function for the standard 
normal distribution. 

Exhibit A5.1: The Black–Litterman model 

Source: PIMCO. Hypothetical example for illustrative purposes only. 
Asset tilts are relative to the market portfolio. PIMCO capital market assumptions are based on the product of risk factor exposures and projected risk factor premia 
which rely on historical data, valuation metrics and qualitative inputs from senior PIMCO investment professionals. Figure is provided for illustrative purposes and is not 
indicative of the past or future performance of any PIMCO product.

Asset class Market portfolio Implied returns Sample CMAs Blended returns 
Asset tilts  
Long-only 

U.S. equity 26% 5.8% 5.3% 5.5% 
Non-U.S. DM equity 12% 6.3% 5.9% 6.1% 
EM equity 11% 6.9% 6.2% 6.6% 
US Agg 16% 0.5% 1.0% 0.8% 
Global Agg ex-US 23% 1.5% 2.1% 1.8% 
Global high yield 2% 3.4% 2.8% 3.1% 
Global ILB 2% 1.8% 1.2% 1.5% 
Commodity 2% 4.2% 3.0% 3.6% 
Real estate 4% 5.2% 6.6% 5.9% 
Private equity 3% 8.3% 8.8% 8.6% 
Private debt 1% 3.2% 5.9% 4.6% 

APPENDIX 4: PROXIES FOR RISK MODELING 

Asset class Proxy 
U.S. equity Russell 3000 Index 

Non-U.S. DM equity MSCI World ex USA Index 

EM equity MSCI Emerging Markets Index 

US Agg Bloomberg Barclays US Aggregate Bond Index 

Global Agg ex-US Bloomberg Barclays Global Aggregate ex-USD Index 

Global high yield Bloomberg Barclays Global High Yield Index 

Global ILB Bloomberg Barclays World Government Inflation-
Linked Bond Index 

Commodity Bloomberg Commodity Total Return Index 

Real estate PIMCO private real estate model 

Private equity PIMCO private equity model 

Private debt PIMCO broad private credit model 

PIMCO models are not investable and are provided as a proxy for the asset class. 
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A “safe haven” asset is an investment that is perceived to be able to retain or increase in value during times of market volatility. Investors seek safe havens to limit 
their exposure to losses in the event of market turbulence. 
The terms “cheap” and “rich” as used herein generally refer to a security or asset class that is deemed to be substantially under- or overpriced compared to both 
its historical average as well as to the investment manager’s future expectations. There is no guarantee of future results or that a security’s valuation will ensure 
a profit or protect against a loss. 
A "risk-free" asset refers to an asset which in theory has a certain future return. U.S. Treasuries are typically perceived to be the "risk-free" asset because they are 
backed by the U.S. government. 
This paper includes hypothetical assumptions and scenarios. HYPOTHETICAL PERFORMANCE RESULTS HAVE MANY INHERENT LIMITATIONS, SOME OF 
WHICH ARE DESCRIBED BELOW. NO REPRESENTATION IS BEING MADE THAT ANY ACCOUNT WILL OR IS LIKELY TO ACHIEVE PROFITS OR LOSSES SIMILAR TO 
THOSE SHOWN. IN FACT, THERE ARE FREQUENTLY SHARP DIFFERENCES BETWEEN HYPOTHETICAL PERFORMANCE RESULTS AND THE ACTUAL RESULTS 
SUBSEQUENTLY ACHIEVED BY ANY PARTICULAR TRADING PROGRAM. 
ONE OF THE LIMITATIONS OF HYPOTHETICAL PERFORMANCE RESULTS IS THAT THEY ARE GENERALLY PREPARED WITH THE BENEFIT OF HINDSIGHT. 
IN ADDITION, HYPOTHETICAL TRADING DOES NOT INVOLVE FINANCIAL RISK, AND NO HYPOTHETICAL TRADING RECORD CAN COMPLETELY ACCOUNT 
FOR THE IMPACT OF FINANCIAL RISK IN ACTUAL TRADING. FOR EXAMPLE, THE ABILITY TO WITHSTAND LOSSES OR TO ADHERE TO A PARTICULAR 
TRADING PROGRAM IN SPITE OF TRADING LOSSES ARE MATERIAL POINTS WHICH CAN ALSO ADVERSELY AFFECT ACTUAL TRADING RESULTS. THERE ARE 
NUMEROUS OTHER FACTORS RELATED TO THE MARKETS IN GENERAL OR TO THE IMPLEMENTATION OF ANY SPECIFIC TRADING PROGRAM WHICH CANNOT 
BE FULLY ACCOUNTED FOR IN THE PREPARATION OF HYPOTHETICAL PERFORMANCE RESULTS AND ALL OF WHICH CAN ADVERSELY AFFECT ACTUAL 
TRADING RESULTS. 
Figures are provided for illustrative purposes and are not indicative of the past or future performance of any PIMCO product. 
Return assumptions are for illustrative purposes only and are not a prediction or a projection of return. Return assumption is an estimate of what investments 
may earn on average over the long term. Actual returns may be higher or lower than those shown and may vary substantially over shorter time periods. 
Past performance is not a guarantee or a reliable indicator of future results.
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All investments contain risk and may lose value. Investing in the bond market is subject to risks, including market, interest rate, issuer, credit, inflation risk, and 
liquidity risk. The value of most bonds and bond strategies are impacted by changes in interest rates. Bonds and bond strategies with longer durations tend to 
be more sensitive and volatile than those with shorter durations; bond prices generally fall as interest rates rise, and low interest rate environments increase this 
risk. Reductions in bond counterparty capacity may contribute to decreased market liquidity and increased price volatility. Bond investments may be worth more 
or less than the original cost when redeemed. Equities may decline in value due to both real and perceived general market, economic and industry conditions. 
Private debt involves an investment in non-publically traded securities which may be subject to illiquidity risk.  Portfolios that invest in private credit may be 
leveraged and may engage in speculative investment practices that increase the risk of investment loss. Swaps are a type of derivative; swaps are increasingly 
subject to central clearing and exchange-trading. Swaps that are not centrally cleared and exchange-traded may be less liquid than exchange-traded instruments. 
Derivatives may involve certain costs and risks, such as liquidity, interest rate, market, credit, management and the risk that a position could not be closed 
when most advantageous. Investing in derivatives could lose more than the amount invested. Diversification does not ensure against loss. Management risk 
is the risk that the investment techniques and risk analyses applied by an investment manager will not produce the desired results, and that certain policies or 
developments may affect the investment techniques available to the manager in connection with managing the strategy. 
Forecasts, estimates and certain information contained herein are based upon proprietary research and should not be considered as investment advice or a 
recommendation of any particular security, strategy or investment product. There is no guarantee that results will be achieved. 
Alpha is a measure of performance on a risk-adjusted basis calculated by comparing the volatility (price risk) of a portfolio vs. its risk-adjusted performance 
to a benchmark index; the excess return relative to the benchmark is alpha. Beta is a measure of price sensitivity to market movements. Market beta is 1. The 
correlation of various indexes or securities against one another or against inflation is based upon data over a certain time period. These correlations may vary 
substantially in the future or over different time periods that can result in greater volatility. The credit quality of a particular security or group of securities does 
not ensure the stability or safety of an overall portfolio. The quality ratings of individual issues/issuers are provided to indicate the credit-worthiness of such 
issues/issuer and generally range from AAA, Aaa, or AAA (highest) to D, C, or D (lowest) for S&P, Moody’s, and Fitch respectively. 
PIMCO does not provide legal or tax advice. Please consult your tax and/or legal counsel for specific tax or legal questions and concerns. 
This material contains the current opinions of the manager and such opinions are subject to change without notice.  This material is distributed for informational 
purposes only and should not be considered as investment advice or a recommendation of any particular security, strategy or investment product. Information 
contained herein has been obtained from sources believed to be reliable, but not guaranteed. 
PIMCO as a general matter provides services to qualified institutions, financial intermediaries and institutional investors. Individual investors should contact their 
own financial professional to determine the most appropriate investment options for their financial situation. This is not an offer to any person in any jurisdiction 
where unlawful or unauthorized. | Pacific Investment Management Company LLC, 650 Newport Center Drive, Newport Beach, CA 92660 is regulated by the 
United States Securities and Exchange Commission. | PIMCO Europe Ltd (Company No. 2604517) and PIMCO Europe Ltd - Italy (Company No. 07533910969) are 
authorised and regulated by the Financial Conduct Authority (12 Endeavour Square, London E20 1JN) in the UK. The Italy branch is additionally regulated by the 
Commissione Nazionale per le Società e la Borsa (CONSOB) in accordance with Article 27 of the Italian Consolidated Financial Act. PIMCO Europe Ltd services 
are available only to professional clients as defined in the Financial Conduct Authority’s Handbook and are not available to individual investors, who should not rely 
on this communication. PIMCO Europe Ltd (Company No. 2604517) is authorised and regulated by the Financial Conduct Authority (12 Endeavour Square, London 
E20 1JN) in the UK. The services provided by PIMCO Europe Ltd are not available to retail investors, who should not rely on this communication but contact their 
financial adviser. | PIMCO Europe GmbH (Company No. 192083, Seidlstr. 24-24a, 80335 Munich, Germany), PIMCO Europe GmbH Italian Branch (Company No. 
10005170963), PIMCO Europe GmbH Spanish Branch (N.I.F. W2765338E) and PIMCO Europe GmbH Irish Branch  (Company No. 909462) are authorised and 
regulated by the German Federal Financial Supervisory Authority (BaFin) (Marie- Curie-Str. 24-28, 60439 Frankfurt am Main) in Germany in accordance with Section 
32 of the German Banking Act (KWG). The Italian Branch, Irish Branch and Spanish Branch are additionally supervised by: (1) Italian Branch: the Commissione 
Nazionale per le Società e la Borsa (CONSOB) in accordance with Article 27 of the Italian Consolidated Financial Act; (2) Irish Branch: the Central Bank of Ireland 
in accordance with Regulation 43 of the European Union (Markets in Financial Instruments) Regulations 2017, as amended; and (3) Spanish Branch: the Comisión 
Nacional del Mercado de Valores (CNMV) in accordance with obligations stipulated in articles 168 and  203  to 224, as well as obligations contained in Tile V, Section 
I of the Law on the Securities Market (LSM) and in articles 111, 114 and 117 of Royal Decree 217/2008, respectively. The services provided by PIMCO Europe GmbH are 
available only to professional clients as defined in Section 67 para. 2 German Securities Trading Act (WpHG). They are not available to individual investors, who should 
not rely on this communication. | PIMCO (Schweiz) GmbH (registered in Switzerland, Company No. CH-020.4.038.582-2) . The services provided by PIMCO (Schweiz) 
GmbH are not available to retail investors, who should not rely on this communication but contact their financial adviser. | PIMCO Asia Pte Ltd (Registration No. 
199804652K) is regulated by the Monetary Authority of Singapore as a holder of a capital markets services licence and an exempt financial adviser. The asset 
management services and investment products are not available to persons where provision of such services and products is unauthorised. | PIMCO Asia Limited 
is licensed by the Securities and Futures Commission for Types 1, 4 and 9 regulated activities under the Securities and Futures Ordinance. PIMCO Asia Limited 
is registered as a cross-border discretionary investment manager with the Financial Supervisory Commission of Korea (Registration No. 08-02-307). The asset 
management services and investment products are not available to persons where provision of such services and products is unauthorised. | PIMCO Investment 
Management (Shanghai) Limited Unit 3638-39, Phase II Shanghai IFC, 8 Century Avenue, Pilot Free Trade Zone, Shanghai, 200120, China (Unified social credit code: 
91310115MA1K41MU72) is registered with Asset Management Association of China as Private Fund Manager (Registration No. P1071502, Type: Other)  | PIMCO 
Australia Pty Ltd ABN 54 084 280 508, AFSL 246862. This publication has been prepared without taking into account the objectives, financial situation or needs of 
investors. Before making an investment decision, investors should obtain professional advice and consider whether the information contained herein is appropriate 
having regard to their objectives, financial situation and needs. | PIMCO Japan Ltd, Financial Instruments Business Registration Number is Director of Kanto 
Local Finance Bureau (Financial Instruments Firm) No. 382. PIMCO Japan Ltd is a member of Japan Investment Advisers Association and The Investment Trusts 
Association, Japan. All investments contain risk. There is no guarantee that the principal amount of the investment will be preserved, or that a certain return will be 
realized; the investment could suffer a loss. All profits and losses incur to the investor. The amounts, maximum amounts and calculation methodologies of each 
type of fee and expense and their total amounts will vary depending on the investment strategy, the status of investment performance, period of management and 
outstanding balance of assets and thus such fees and expenses cannot be set forth herein. | PIMCO Taiwan Limited is managed and operated independently. The 
reference number of business license of the company approved by the competent authority is (109) Jin Guan Tou Gu Xin Zi No. 027. 40F., No.68, Sec. 5, Zhongxiao 
E. Rd., Xinyi Dist., Taipei City 110, Taiwan (R.O.C.). Tel: +886 2 8729-5500. | PIMCO Canada Corp. (199 Bay Street, Suite 2050, Commerce Court Station, P.O. Box 363, 
Toronto, ON, M5L 1G2) services and products may only be available in certain provinces or territories of Canada and only through dealers authorized for that purpose. 
| PIMCO Latin America Av. Brigadeiro Faria Lima 3477, Torre A, 5° andar São Paulo, Brazil 04538-133. | No part of this publication may be reproduced in any form, or 
referred to in any other publication, without express written permission. PIMCO is a trademark of Allianz Asset Management of America L.P. in the United States and 
throughout the world. ©2021, PIMCO. 
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