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As curious as it may sound, few asset allocation primers 
describe portfolio models while connecting them to each 
other. Tis article does so by describing and contrasting 
the mechanics of standard asset allocation models, 
including the utility-based, Markowitz, Kelly, risk parity 
and fxed allocation approaches. It seeks to accomplish 
four objectives: First, it develops the mathematics of the 
models; second, it identifes the precise conditions under 
which the models are equivalent; third, it discusses the 
specifcs – risk/return characteristics – of each approach; 
and last, it provides numerical examples that compare 
allocations to asset classes and return and risk measures 
for various models. 

Te main points are these: 

• Utility-based asset allocation models are the most general class of models.

• For some specifc utility functions and return distributions, the Markowitz approach is a
special example of a utility-based model.

• Te Kelly framework can, in turn, be a special example of the Markowitz model, for a
specifc risk-aversion coefcient.

• Under some conditions on correlations and Sharpe ratios, risk parity is optimal and
collapses into a Markowitz model.

• Kelly strategies present unique characteristics as they outperform alternative strategies
almost surely over long time periods.

• Tese unique characteristics come at the cost of generally extreme risk parameters.
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• 	 Despite a lack of theoretical foundations, risk parity strategies
have been partly fueled by their empirical success. One may
call this luck.

• 	 Numerical examples show a wide disparity across strategies.

1. THE UBIQUITOUS MEAN -VARIANCE ANALYSIS

Expected utility maximization and mean-variance analysis 
(Markowitz 1952, 1959) are two prevailing approaches to asset 
allocation. Most academic researchers prefer the expected utility 
maximization approach to model choices under uncertainty 
because the solutions will satisfy certain basic conditions of 
rationality (von Neumann and Morgenstern 1944). It is ofen the 
ultimate standard for evaluating the optimality of a model or 
ranking diferent models. 

Tis section discusses the close connection between the two 
approaches and shows their convergence in a continuous-time 
power utility maximization problem with constant investment 
opportunities. In addition, we identify the assumptions under 
which the optimal solution coincides with the Kelly (growth­
optimal) strategy or the risk parity strategy. We will discuss 
these two strategies in more detail in Section 2. 

1.1 Mean-variance analysis 

Te mean-variance analysis assumes investors only care about 
the frst two moments of portfolio returns and maximize the 
mean-variance utility function1

where λ measures the investor’s risk aversion. Tis approach 
is easy to implement and understand. It is by far the most 
prominent asset allocation model for practitioners and 
underlies most of the products and advice provided by 
fnancial institutions. 

For single-period portfolio optimizations, mean-variance 
analysis is consistent with the theoretically popular expected 
utility maximization framework if the investor’s utility is 
quadratic or if returns are normally distributed. Even if the 
utility function is not quadratic, Levy and Markowitz (1979) 
showed that mean-variance optimization is equivalent to 
maximizing the expectation of the second-order Taylor 
approximations of standard utility functions, such as the power 
utility and the exponential utility. Tus, the consistency of the 

mean-variance analysis with expected utility maximization for 
single-period optimization problems depends on the degree of 
non-normality of returns, the investment horizon and the 
specifc functional form of the investor’s utility. 

For multiperiod portfolio optimizations, maximizing the 
commonly preferred constant relative risk aversion (CRRA) 
utility with continuous rebalancing2 and lognormal prices 
will lead to mean-variance optimal (MVO) solutions, as 
discussed below. 

Te CRRA utility (also known as the power utility or isoelastic 
utility) has the following functional form: 

where γ measures the constant relative risk aversion of the 
investor. In the extreme case where γ=0, the investor is risk 
neutral. When γ=1, the investor has a log utility.3 Empirical 
studies and surveys suggest most investors’ relative risk aversion 
to wealth is between 1 and 10 (Ang 2014). Te most commonly 
accepted values for asset allocation are between 1 and 5 and 
centered around 3. 

A nice feature of the CRRA utility is that it leads to optimal 
portfolio allocations not dependent on the level of wealth. Tis 
wealth homogeneity property is important for the scalability of 
investment management because it allows the same model to be 
used for diferent sizes of assets. 

Te investor with wealth W0 at time 0 maximizes the expected 
utility of his or her fnal wealth at time T by choosing the 
optimal portfolio weights in N risky asset(s) and a risk-free asset 
with continuous rebalancing. For simplicity, assume the investor 
has no labor income or intermediate consumptions and there 
are no transaction costs. 

Let’s start with a simple case with only one risky asset. Assume 
the risky asset’s price follows a standard geometric Brownian 
motion with parameters (μ,σ2) and the risk-free asset has a 
geometric growth rate of r. Assume asset returns are 
independent and identically distributed (i.i.d.) over time. 

With the standard intertemporal budget constraint and Itô’s 
lemma, it can be shown (see Appendix 2) that the optimal 
allocation to the risky asset, x*, is the solution to the 
following problem: 
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Terefore, the solution of the optimal weight to the risky asset is 

where s is the instantaneous Sharpe ratio of the risky asset. 

Note that the immediate objective function (the instantaneous 
integrand) and the optimal solution resemble those under the 
mean-variance optimization framework where the risk aversion 
parameter of the CRRA utility function γ coincides with the risk 
aversion parameter for mean-variance optimization λ. It is the 
continuous-time instantaneous equivalent of the static single-
period Markowitz model. Te optimal allocation to the risky 
asset is directly proportional to the excess return of the risky 
asset and inversely proportional to its variance or the investor’s 
relative risk aversion. 

It is straightforward to extend the analysis to the cases where 
there are two or more risky assets following a multivariate 
geometric Brownian motion with parameters (μ,Σ). Te optimal 
allocation to the N risky assets in this case is: 

Te composition of the subportfolio of risky assets does not 
depend on the investor’s risk aversion. It also achieves the 
maximum possible Sharpe ratio given the investment universe. 
Te risk aversion parameter γ only afects the total weight in 
risky assets and the weight in the risk-free asset. Tis is similar 
to the two-fund separation theorem in the traditional mean-
variance analysis. 

1.2 Kelly and risk parity as special cases 

It is easy to see that the Kelly strategy is a special case of the 
optimal solution to the CRRA utility maximization problem, 
with a specifc value for the risk aversion parameter. If γ=1, the 
CRRA utility is reduced to log utility. Te solution will 
maximize the expected geometric growth rate of the portfolio 
and therefore is ofen referred to as the optimal growth portfolio 
(or the Kelly portfolio). 

It is less straightforward to fnd the conditions under which the 
optimal solution will be a risk parity portfolio. Let’s start from 
the simple case where N=2. We can write the optimal weights to 
the two risky assets as functions of their volatilities, Sharpe 
ratios and correlation ρ: 

If the two risky assets have the same Sharpe ratios, the optimal 
risky asset portfolio is also a risk parity portfolio in the sense of 
both equal stand-alone risks parity portfolio in the sense of both equal stand-alone risks (          )  and equal risk 
contributions  (                                      ) where risk 
is measured by volatility. 

When N > 2, if the assets have the same Sharpe ratios and the 
correlations are constant, the optimal allocation will still be a 
risk parity portfolio (see Appendix 3).

2. MORE ON KELLY AND RISK PARITY 

Te Kelly strategy and the risk parity strategy are two popular 
alternative asset allocation models in the investment industry. In 
Section 1, we show the conditions under which the solution to a 
CRRA utility maximization problem coincides with these two 
strategies, respectively. In this section, we discuss the features of 
the two models in more detail. 

2.1 Te Kelly (growth-optimal) strategy 

Te Kelly (or growth-optimal) strategy maximizes the expected 
geometric growth rate of a portfolio. Tis is equivalent to 
maximizing the expected logarithm of fnal wealth. Terefore, 
the optimal dynamic portfolio choice is myopic. Te Kelly 
strategy allows the breakdown of a multiperiod optimization 
problem into single-period problems that are easy to solve. 

In addition to its convenience of implementation, the Kelly 
strategy has a few other impressive properties. For example, it 
minimizes the expected time to reach a given wealth target. In 
the long run, the Kelly strategy asymptotically dominates all 
essentially diferent strategies (Breiman 1961). 

Another interesting property of the Kelly strategy is its 
competitive optimality (Bell and Cover 1980). Denote an 
investor’s wealth streams under the Kelly strategy and under any 
other alternative strategy by 

1980). Denote an investor’s wealth streams under the Kelly strategy and under any other 

    and    , respectively. It can be shown that  respectively. It can be 
shown that 

      
       

 
 for any t. It means the ratio of the 

investor’s wealth associated with any competing strategy to the 
wealth associated with the Kelly strategy is expected to be less 
than 1 for any horizon. 
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In our previous example of a single risky asset and continuous 
rebalancing, assume the risky asset has an annual risk premium 
of 3% and an annual volatility of 15%. Consider the Kelly 
strategy (x=1.3) and an alternative fxed mix strategy where 
x =0.2. Exhibit 1 shows the probability that the Kelly strategy 
will outperform the alternative strategy over time. In fact, this 
probability is always higher than 50% for any alternative fxed 
mix strategy and converges to 100% as the investment horizon 
goes to infnity (see Appendix 4). 

Exhibit 1: Probability that the Kelly strategy will 
outperform another fxed mix strategy 

)

Exhibit 2: Probability of loss for optimal strategies with 
diferent risk aversion parameters 
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Source: PIMCO. Hypothetical example for illustration purposes only. See Appendix 4 for 
more details. 

Horizon (years) 

Source: PIMCO. Hypothetical example for illustration purposes only. See Appendix 2  
(Case 1) for more details. 

Another risk measure in which an investor might be interested 
is expected maximum drawdown (EMDD), which measures the 
expected maximum percentage loss from peak to trough within 
a specifc investment horizon. Exhibit 3 plots EMDD for optimal 
strategies with diferent risk aversion parameters over horizons 
up to 12 months, based on the same parameter assumptions as 
in the previous exhibits. For any given horizon, EMDD is 
decreasing in the risk aversion parameter, which means the 
Kelly strategy is the riskiest based on this measure. 

Te main disadvantage of the Kelly strategy is that it can be very 
risky in the short run. Tis is consistent with the fact that the 
log utility is a special case of the CRRA utility when the risk 
aversion parameter γ is equal to 1, the lower bound of its 
plausible values. Consider the same simple example with one 
risky asset, as in Exhibit 1, where r = 1%, μ = 4% and σ = 15%. 
Exhibit 2 shows the probability of loss for the optimal portfolio 
over time under diferent risk aversion parameters. Te 
probability of loss is decreasing in both T and γ. Te Kelly 
strategy (γ=1) has a signifcantly higher risk of loss than the 
other optimal strategies, with γ=2 and γ=5. 

Exhibit 3: EMDD for optimal strategies with diferent risk 
aversion parameters 
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In addition, the minimal risk aversion implies the optimal 
portfolio choice is more sensitive to estimation errors for the 
return distributions because the weight in the risky assets is 
inversely proportional to γ. In practice, Kelly proponents ofen 
apply a fractional Kelly strategy (investing a fxed fraction of 
money in the Kelly strategy and the rest in cash) to reduce risk 
and protect against estimation errors. However, in the CRRA 
utility maximization problem discussed previously, 
            , meaning the risk aversion parameter  meaning the risk aversion parameter γ only 
afects the weights in the risky assets versus cash, not the 
composition of the risky subportfolio. Terefore, applying a 
fractional Kelly strategy is equivalent to using a γ higher than 1 
in the CRRA utility maximization/mean-variance optimization 
problem. A fractional Kelly strategy is simply a mean-variance 
solution with a potentially more realistic risk aversion parameter. 

Although Kelly dominates other strategies in the long run, it can 
take a very long time for this to happen. In the example shown 
in Exhibit 1, it would take 227 years to have a 90% confdence 
that the Kelly strategy (x=1.3) will outperform the alternative 
fxed mix strategy with x=0.2. 

Next we compare Kelly strategies under diferent investment 
opportunities by fxing γ=1 and changing the instantaneous 
Sharpe ratio of the risky asset. As shown in Appendix 2 (Case 1), 
the value of the Kelly portfolio follows: 

Tis means the annual volatility of the Kelly strategy is equal to 
s, the instantaneous Sharpe ratio of the risky asset. Terefore, 
the volatility of the Kelly strategy is higher when the investment 
opportunity is better. However, higher volatility does not 
necessarily mean a higher probability of loss, because the 
expected return of the Kelly strategy is also higher, with a higher 
Sharpe ratio of the risky asset. A better investment opportunity 
is a mixed blessing for Kelly strategies in terms of probability of 
loss. Appendix 2 shows the probability of loss for a Kelly strategy 
is increasing in s if s2<2r and decreasing in s if s2>2r. Given the 
current low-interest-rate environment, an improved Sharpe 
ratio most likely implies a lower probability of loss, as illustrated 
in Exhibit 4, with the assumption that r = 1%. 

Exhibit 4: Probability of loss for Kelly strategies under 
diferent investment opportunities 
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Source: PIMCO. Hypothetical example for illustration purposes only. See Appendix 2 for 
more details. 

Ziemba (2015) characterized Kelly portfolios in reality as having 
high concentrations in very few investments, frequent and big 
short-term losses and superior long-term growth, and provided 
examples of highly successful investors who are known to follow 
or likely follow the Kelly strategy, based on observed 
characteristics of their investments. If the quality of the inputs 
(estimated return distributions – especially the means) is high 
and the investment horizon is long enough to allow 
compounding of many rebalancing periods, the Kelly strategy 
can be a powerful asset allocation and risk management tool 
that potentially maximizes long-term wealth growth. However, 
for short-term investors who have more risk aversion than that 
implied by log utility, the Kelly strategy tends to result in more 
risk than they might be willing to take under general investment 
conditions. It should be considered with great caution. 

2.1.1 Volatility pumping and portfolio growth 

Volatility pumping is a strategy or mechanism ofen associated 
with growth-optimal portfolios. Luenberger (1998) coined the 
term and described how rebalancing a portfolio to fxed weights 
can generate a higher expected growth rate than the weighted 
average of the expected growth rates of the individual assets. He 
attributed the excess growth to the pumping action that 
automatically “buys low and sells high” through the process of 
rebalancing,4 even when returns are intertemporally 
independent. Te implications are that volatility is opportunity 
and investors should seek it out rather than shunning it. 
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We believe the primary source of the excess growth rate of the 
portfolio in the case of i.i.d. returns is not rebalancing itself but 
variance reduction relative to the mean. To see this, we need to 
understand the relationship between the expected log returns 
(geometric growth rates) and expected arithmetic returns: 

Tis says an asset’s expected log return is lower than its expected 
arithmetic return by approximately half of the variance of the 
arithmetic return. Tis relationship holds exactly in continuous 
time for assets following geometric Brownian motions and 
approximately in short discrete-time intervals or for assets 
following other distributions (see Appendix 6). 

A popular and simple example of volatility pumping is to 
generate a positive expected geometric growth rate for a 
portfolio with two assets that have zero expected geometric 
growth rates. One asset is risky and follows a standard geometric 
Brownian motion with parameters (μ,σ2). By construction, we 
have 

asset is risky and follows a standard geometric Brownian motion with parameters 
   

        (for example, 2% mean and 20% volatility). Te 
other asset is risk-free with a zero growth rate. Ten the value of 
a continuously rebalanced portfolio with fxed weight x in the 
risky asset and 1−x in the risk-free asset will follow a geometric 
Brownian motion with parameters (xμ,x2 σ2). Terefore, the 
expected geometric growth rate of the portfolio is: 

Terefore, the expected excess geometric growth rate of the 
portfolio is positive for any xЄ(0,1) and is maximized at 

Therefore, the expected excess geometric growth rate of the portfolio is positive for any        
 

when x=0.5 under the Kelly strategy in this simple two-asset 
example. A Kelly strategy is not required to achieve a positive 
excess geometric growth rate for the portfolio. 

Te excess geometric growth rate is increasing in the volatility of 
the risky asset; this is sometimes used as evidence that investors 
should seek out volatile assets to gain an excess growth rate by 
applying a volatility pumping strategy. However, even without 
rebalancing, the excess growth rate can still be achieved for 
relatively short investment horizons because the relationship 
between expected log return and expected arithmetic return still 
holds, approximately, in this case. Terefore, the excess growth 

rate is not the direct result of rebalancing itself, but a result of 
variance reduction more than the mean reduction when the 
risky asset is combined with the risk-free asset with weights 
between 0 and 1 (the mean is scaled by x, and the variance is 
scaled by x2). Even though rebalancing involves selling the risky 
asset afer its price goes up and buying it afer its price goes 
down, it does not redistribute wealth to the asset with better 
future expected growth because returns are intertemporally 
independent and both assets have zero expected growth. 

For longer horizons without rebalancing (i.e., a long-term buy-
and-hold strategy), the portfolio weights will drif away from 
the optimal value over time and therefore reduce the expected 
growth rate of the portfolio. Te main contribution of 
rebalancing to portfolio growth is to keep the weights at the 
optimal level that maximizes portfolio growth over time rather 
than buying low and selling high, unless the returns exhibit 
certain intertemporal dependence, such as mean reversion. 

2.1.2 Te growth efcient frontier 

We have shown that the Kelly strategy maximizes the expected 
log return or geometric growth rate of the portfolio. Although 
the strategy dominates other strategies in the long run, it is ofen 
criticized for being too risky in the short run because it does not 
take into account the volatility of the log return or the geometric 
growth rate. 

In practice, many long-term investors do care about the 
volatility of the log return in addition to the mean log return. 
Luenberger (1993) proposed that an investor who considers only 
long-term performance will evaluate a portfolio only on the 
basis of the mean and variance of its single-period log return 
given i.i.d. investment opportunities over time. 

It is natural to ask whether we can have risk/return trade-of 
where returns are measured in terms of log returns, similar to 
the simple risk/return trade-of in the traditional mean-variance 
analysis. Exhibit 5 plots such a growth efcient frontier based 
on the model assumptions for the numerical example in 
Section 3. 
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Exhibit 5: Growth efcient frontier for three risky assets and 
a risk-free asset 
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Compared with the traditional mean-variance efcient frontier 
with a risk-free asset, which is a straight line passing the risk-
free asset and the maximum Sharpe ratio portfolio, the growth 
efcient frontier is a curve with a maximum mean log return 
point, which is the Kelly strategy. Te frontier is very fat near 
the maximum point, meaning that reducing the mean log return 
slightly can greatly reduce its volatility. 

In the CRRA utility maximization problem with assets following 
geometric Brownian motion presented above, all the portfolios 
on the growth efcient frontier can be constructed by mixing 
the risk-free asset and the log-optimal portfolio. Under this 
model setup, fractional Kelly is efcient. 

2.2 Risk parity 

Risk-based portfolio construction techniques such as risk parity 
have gained great popularity among investors and academics 
alike since the 2008 global fnancial crisis. Te demand stems 
from the higher risk aversion or awareness of investors, as well 
as the lack of robustness of the traditional mean-variance 
optimal portfolio due to its sensitivity to the estimation errors in 
its inputs, especially in expected returns. For risk parity and 
similar risk-based approaches, such as minimum-variance 
portfolios, the only input required is the risk estimation, which 
is generally believed to be more robust than return forecasts 
(see, for example, Merton 1980). 

Despite the vast and still-growing literature on risk parity, there 
is no consensus on the exact defnition of a risk parity portfolio. 
Te general philosophy is to equalize risk from diferent 
portfolio components. Te risk can be the components’ stand­
alone volatilities, ignoring correlations among component 
returns or their contributions to portfolio volatility. An equal 
stand-alone risk (ESR) portfolio equalizes the products of the 
portfolio weights in the components and the volatilities of those 
components. Terefore, the risk parity weights are inversely 
proportional to the component return volatilities: 

       

  
     

. An equal risk
 

An equal risk contribution (ERC) portfolio equalizes the 
portfolio volatility contribution from each component: contribution (ERC) portfolio equalizes the portfolio volatility contribution from each
       

         
, where where x is the vector of portfolio weights in the 

components, the subscript represents the ith element of a vector 
and Σ is the covariance matrix of component returns. An 
alternative interpretation of the ERC portfolio, proposed by Lee 
(2011), is that the components’ weights are inversely 
proportional to their betas with respect to the portfolio. Te 
ERC portfolio generally has no analytical solutions and has to be 
solved for numerically. In the special case of constant pairwise 
correlations, the two portfolios coincide. 

Te portfolio components can be defned based on the asset 
classes, securities or risk factors that are the underlying drivers 
of risk.5 In addition, because there is no theory to guide these 
decisions, diverse risk parity strategies can be constructed 
by varying investment universe, grouping schemes and 
investment horizons. 

Te lack of a standard defnition for risk parity has stymied 
eforts to construct a benchmark to evaluate the performance of 
diferent risk parity strategies. In fact, there has been a 
considerable disparity in the performance of risk parity funds. 
Investors need to exercise extra caution in choosing risk parity 
products: What they think they are getting may not be 
consistent with the investment objectives they want to achieve, 
due to the heterogeneity of the actual strategies implemented 
and the resulting performance divergence. 

Te increasing popularity of risk parity strategies has been 
fueled in part by their empirical success over the past few 
decades. However, history is only one realized path among 
many possible paths. As the familiar disclaimer says, “Past 
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performance is not a guarantee of future returns.” A classic point 
of contention in regard to risk parity is whether its historical 
success is simply driven by the long-lasting fxed income rally, 
which may not persist in the future. 

As a heuristic, the risk parity strategy sufers from a lack of a 
solid theoretical foundation. As discussed previously, its mean-
variance optimality depends on strong assumptions on the 
Sharpe ratios and the correlation matrix of the component 
returns. Tere have been some recent attempts to fll this gap. 
Asness, Frazzini and Pedersen (2012) tried to justify the 
superiority of risk parity using the leverage aversion theory,6

which suggests low-beta assets ofer higher risk-adjusted returns 
than high-beta assets due to the leverage aversion of average 
investors; an investor with lower leverage aversion than average 
can exploit the risk premium with risk parity portfolios due to 
their tilts toward safer assets relative to the market portfolio. In 
another empirical study, however, Anderson, Bianchi and 
Goldberg (2012) compared the historical performance of 
unlevered and levered risk parity strategies with 60/40 and 
value-weighted strategies during 1926-2010 and subperiods and 
showed that incorporating trading costs can negate the 
outperformance of risk parity strategies, especially with 
leverage. Fisher, Maymin and Maymin (2015) provided another 
perspective to justify risk parity for investors facing uncertainty 
in the expected return estimates. Tey described the exact 
conditions for the uncertainty set under which the minimum 
Sharpe ratio of the risk parity (defned as ESR) portfolio is 
higher than those of other portfolios, including the tangency 
portfolio. 

In practice, the leverage required for risk parity portfolios to 
achieve a typical return or risk target poses potentially higher 
downside risk when the safer assets, such as credit, have 
negative skews. Leverage also can exacerbate turnover, leading 

to much higher trading costs than those for unlevered strategies 
(Anderson, Bianchi and Goldberg 2012). 

Although the implementation of risk parity does not require 
expected return forecasts, its performance is almost always 
evaluated based on both return and risk measures. If investors 
do not believe expected returns can be estimated reliably, are 
willing to assume the included portfolio components have equal 
long-term Sharpe ratios and pairwise correlations, and are 
willing and able to use leverage, risk parity can be a very efcient 
heuristic for strategic asset allocation. In the more extreme case 
in which investors also have very low confdence in volatility 
estimates, even a naive equally weighted portfolio can be a 
viable heuristic with decent performance (see, for example, 
DeMiguel, Garlappi and Uppal 2009, and Chaves et al. 2011).

3. NUMERICAL EXAMPLES 

Here we present some simple examples related to the models 
discussed previously. For a more systematic discussion of 
practical quantitative approaches to asset allocation, we 
recommend Naik et al. (2016). 

Suppose an investor faces the optimization problem described 
in Section 1. Te hypothetical investment universe consists of 
four assets: equities, bonds, commodities and cash. Teir i.i.d. 
investment opportunities are shown below (see Exhibit 6). 

Te mean-variance optimal weights to the risky assets are given 
by:              . The  Te weight in cash is therefore 1−1T x*, 
which can be either positive (lending) or negative (borrowing). 
Te relative risk aversion parameter γ only afects the total 
weight in the risky assets and does not change the composition 
of the optimal subportfolio of risky assets. A risk parity portfolio 
equalizes the risk contributions from the three risky assets based 
on the covariance matrix only. For comparison, we also include 
a traditional portfolio that invests 60% in stocks and 40% in 

Exhibit 6: Model assumptions 

Asset µ σ Correlation matrix Instantaneous 
Sharpe ratio 

Equities 3.2% 15.0% 1 0.10 

Bonds 2.2% 3.6% -0.06 1 0.11 

Commodities 2.2% 16.9% 0.34 -0.02 1 0.03 

Cash 1.8% 

Source: PIMCO. Hypothetical example for illustrative purposes only. The distributional assumptions for different assets are based on PIMCO‘s 10-year capital market assumptions  
(model-based except for Commodities, which was based on an internal survey of portfolio managers) and long-term risk estimates as of July 2017. 
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Exhibit 7: Unconstrained MVO, Kelly, unlevered risk parity and 60/40 portfolios 

Asset 

CRRA utility maximization (MVO) 

Risk parity 60/40γ=5 γ=2 γ=1 (Kelly) 

A
ss

et
al

lo
ca

ti
on

Equities 14.3% 35.7% 71.4% 15.0% 60.0% 

Bonds 63.2% 158.1% 316.2% 72.1% 40.0% 

Commodities -0.8% -2.0% -4.0% 12.9% 0.0% 

Cash 23.3% -91.8% -283.7% 0.0% 0.0% 

Ri
sk

al
lo

ca
ti

on

Equities 46.1% 46.1% 46.1% 33.3% 98.4% 

Bonds 54.7% 54.7% 54.7% 33.3% 1.6% 

Commodities -0.8% -0.8% -0.8% 33.3% 0.0% 

Cash 0.0% 0.0% 0.0% 0.0% 0.0% 

Estimated annual return 2.2% 2.9% 4.1% 2.3% 2.8% 

Estimated annual volatility 3.0% 7.5% 15.1% 4.4% 9.0% 

Sharpe ratio 0.15 0.15 0.15 0.13 0.11 

Expected maximum drawdown (1 Year) 3.0% 8.4% 17.7% 4.6% 10.4% 

Source: PIMCO. Hypothetical example for illustrative purposes only. Risk is measured by annual volatility. The MVO portfolios are unconstrained in the sense that there are no constraints 
on short positions in the assets, including cash, and the borrowing rate is assumed to be equal to the risk-free rate. 

bonds.7 Exhibit 7 shows the asset allocation, risk allocation, and 
return and risk estimates of diferent models. 

Within the group of MVO portfolios, the Kelly strategy is very 
risky, with extremely high leverage, although its subportfolio of 
risky assets has the same composition as the MVO portfolios 
with higher risk aversion parameters. 

Te ratio between equities and bonds in the MVO portfolios is 
similar to that in the risk parity portfolio. Tis is consistent with 
the assumption that the two assets have similar Sharpe ratios. 
Te assumption for the Sharpe ratio of commodities, however, is 
much lower. Tis, together with the diferent correlations, means 
the risk parity portfolio will not be mean-variance optimal. 

Exhibit 7 also shows the risk contributions from diferent risky 
assets for each portfolio. Te vast majority of the risk of the 
60/40 portfolio comes from equities. Tis concentration risk is 
one of the motivations for the risk parity strategy, which 
attempts to diversify and equalize risk from diferent sources. 

Exhibit 7 does not include any levered risk parity portfolios 
because, unlike utility maximization or mean-variance 
optimization with a specifc risk aversion parameter, the risk 
parity strategy itself does not specify the leverage or cash 
position needed. In practice, however, a risk parity portfolio is 
ofen leveraged to achieve a certain return or risk target because 
it tends to overweight safer assets than do traditional 

allocations. Exhibit 8 compares these models in an alternative 
way by selecting leverages for the MVO and risk parity 
portfolios so that their volatilities will be equal to that of the 
60/40 portfolio. 

Not surprisingly, because the MVO and risk parity portfolios 
have higher Sharpe ratios than the 60/40 portfolio, their 
estimated returns at the same volatility levels are higher than 
that of the 60/40 portfolio. Te levered MVO portfolio, by 
defnition, has the highest Sharpe ratio among all portfolios 
in the opportunity set and therefore ofers the best risk-
adjusted return. 

Exhibit 8: Levered MVO and risk parity portfolios with the 
same volatility as the 60/40 portfolio 

Asset MVO (γ=1.7) Risk parity 60/40 

A
ss

et
al

lo
ca

ti
on

Equities 42.7% 30.9% 60.0% 

Bonds 189.2% 149.1% 40.0% 

Commodities -2.4% 26.8% 0.0% 

Cash -129.5% -106.7% 0.0% 

Estimated annual return 3.1% 2.9% 2.8% 

Estimated annual volatility 9.0% 9.0% 9.0% 

Sharpe ratio 0.15 0.13 0.11 

Expected maximum drawdown 
(1 Year) 10.2% 10.3% 10.4% 

Source: PIMCO. Hypothetical example for illustrative purposes only. 
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Exhibit 9: Long-only MVO, Kelly, risk parity and traditional 60/40 portfolios 

Asset 

CRRA utility maximization (MVO) 

Risk parity 60/40γ=5 γ=2 γ=1 (Kelly) 

A
ss

et
al

lo
ca

ti
on

Equities 14.0% 28.7% 50.7% 15.0% 60.0% 

Bonds 63.3% 71.3% 49.3% 72.1% 40.0% 

Commodities 0.0% 0.0% 0.0% 12.9% 0.0% 

Cash 22.8% 0.0% 0.0% 0.0% 0.0% 

Ri
sk

al
lo

ca
ti

on

Equities 45.2% 74.8% 96.0% 33.3% 98.4% 

Bonds 54.8% 25.2% 4.0% 33.3% 1.6% 

Commodities 0.0% 0.0% 0.0% 33.3% 0.0% 

Cash 0.0% 0.0% 0.0% 0.0% 0.0% 

Estimated annual return 2.2% 2.5% 2.7% 2.3% 2.8% 

Estimated annual volatility 3.0% 4.9% 7.7% 4.4% 9.0% 

Sharpe ratio 0.15 0.14 0.12 0.13 0.11 

Expected maximum drawdown (1 Year) 3.0% 5.2% 8.7% 4.6% 10.4% 

Source: PIMCO. Hypothetical example for illustrative purposes only. 

However, this is based on the simplifying assumption that the 
investor has no leverage constraints and can borrow at the risk-
free rate.8 In reality, many investors are not allowed to take 
leverage or have a short position for any asset. Exhibit 9 shows 
the MVO portfolios under the long-only constraints. 

When leverage is not allowed, MVO investors who would have 
chosen to leverage are forced to go past the highest-Sharpe-ratio 
risky portfolio along the efcient frontier. Te lower the risk 
aversion an investor has, the farther the optimal allocation will 
be along the frontier. Tis is shown in Exhibit 9. Te long-only 
constraint also keeps the allocation to commodities at the zero 
lower bound. In this particular case, the 60/40 portfolio turns 
out to be mean-variance optimal. 

Te authors wish to thank Mahmoud Hajo, Ravi Mattu, Vasant 
Naik, Andrew Nowobilski, Antonios Sangvinatsos, and Wentao 
Zhao for valuable comments on earlier versions of the manuscript.
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 APPENDIX 

Appendix 1: Comments on the functional form of the mean-
variance utility 

For simplicity, consider a mean-variance optimization with a 
risk-free asset with expected return r and a single risky asset 
with expected return μ and variance σ2. Let x denote the weight 
in the risky asset. Ten we have

 and a single risky asset with expected return denote the weight in the
                       and            . 

Te mean-variance optimization problem is then 

Te frst-order condition is 

             . 

Terefore, the solution is 

Extension to the case of multiple risky assets is straightforward. 
In either case, the   

  in the utility function leads to cleaner 
expressions for the frst-order condition and the fnal 
solution, but more importantly, it allows λ to coincide with 
the risk aversion parameters in other utility functions under 
certain conditions. 

For example, suppose the investor has a negative exponential 
utility over portfolio returns, 

                    ,    
where a measures the constant absolute risk aversion of the 

investor — i.e., 
          

    
      

. 

If the portfolio return is normally distributed with 
             , we have  we have 

                           . 

By the property of lognormal distributions, 

. This is the same functional form for the  Tis is the same 
functional form for the mean-variance utility, so the two risk 
aversion parameters, λ and a, coincide in this case. 

In Appendix 2, we provide another example where λ coincides 
with the risk aversion parameter γ in a continuous-time CRRA 
utility maximization problem with lognormal prices. 

Terefore, max      max                  

https://ssrn.com/abstract=2930857
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Appendix 2: Continuous-time CRRA utility maximization 
with lognormal prices 

Te investor with wealth W0 at time 0 maximizes the expected 
utility of fnal wealth at time T by choosing the optimal portfolio 
weights in N risky asset(s) and a risk-free asset with continuous 
rebalancing. Te investor has no labor income or intermediate 
consumptions, and there are no transaction costs. Te utility 
function is CRRA: 

Assume the investment opportunities are constant over time. 

Case 1: N=1 

Te price of the risky asset follows a geometric Brownian 
motion with parameters (μ,σ 2): 

Te risk-free asset follows a geometric growth rate of r: 

Denote by x t the portfolio weight in the risky asset at time t. 
Ten        is the portfolio weight in the risk-free asset. For 
simplicity, assume the portfolio strategy, 

is the portfolio weight  , is non-stochastic.  is non-

stochastic. For a given portfolio strategy, the dynamics of wealth 

is given by the following budget constraint:
 


          

By Itô’s lemma and the budget constraint, we have 

Because                  
            

, we have

Terefore, 

Terefore, the optimal allocation solves the following problem: 

Te solution is a fxed weight in the risky asset at any time t: 

where s is the instantaneous Sharpe ratio of the risky asset. 

Terefore, the optimal wealth path satisfes 

where Z~N(0,1). When γ=1 (Kelly strategy), ln    
                    . 

Te probability of loss for the optimal portfolio at time T is: 

where Φ is the cumulative distribution function (CDF) of a 

standard normal random variable. 


Terefore, the probability of loss is decreasing in both the time 

horizon T and the risk aversion parameter γ.
 

      

       

              ,
 

 which is increasing in  which is 
increasing in s if 
If γ=1 (Kelly strategy), 

    s2<2r and decreasing in s if s2>2r. Given the 
risk-free rate r and horizon T, the probability of loss is 
maximized when s2=2r. 

Case 2: N≥2 

Te prices of the risky assets follow a multivariate geometric 
Brownian motion with parameters (μ,Σ):

where ΓΓT=Σ.
 

Te risk-free asset follows a geometric growth rate of r:
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Denote by xt the N×1 vector of portfolio weights in the risky 
assets at time t. Ten             is the portfolio weight in the 
risk-free asset. For a given portfolio strategy, the dynamics of 
wealth is given by the following budget constraint: 

By Itô’s lemma and the budget constraint, we have 

                  
             

, we havewe have Because 

Terefore, 

Terefore, the optimal allocation solves the following problem: Therefore, the optimal allocation solves the following problem:
   

Te solution is a fxed vector of weights in the risky assets at any 
time t: 

If N=2, we can invert             
         

 and write the optimal 
weights to the two risky assets as functions of their volatilities, 
Sharpe ratios and correlation ρ: 

Appendix 3: Mean-variance optimality of risk parity 

Below we show one way to prove the statement, and there are 
potentially many other ways (see, for example, Maillard, 
Roncalli and Teiletche 2010). 

Defne the following additional notations: 

                  is the N×1 vector of volatilities of the 
risky assets; 

D=diag(σ) is the N×N diagonal matrix with the volatilities as its 
diagonal elements; 

C is the correlation matrix of the risky assets — i.e., Σ=DCD; 

              . 

Assume further: 

1. All risky assets have the same Sharpe ratios:          , 

where k is a constant.

2. All the pairwise correlations are the same:             . 

Assumption 2 implies 
            . 

Premultiplying both sides by C -1, we have 

Terefore, 

which means   
      

                  .

Te MVO portfolio therefore is a risk parity portfolio in the 
sense of both equal stand-alone risks and equal risk 
contributions (the two coincide under the assumption of 
identical pairwise correlations). 

Appendix 4: Probability that the Kelly strategy will 
outperform another fxed mix strategy 

Consider the following simple example with one risky asset. 

Te price of the risky asset follows a geometric Brownian 
motion with parameters (μ,σ 2): 

Te risk-free asset follows a geometric growth rate of r: 

Denote by x t the portfolio weight in the risky asset at time t. 
Ten 1−x t is the portfolio weight in the risk-free asset. For a 
given strategy, the dynamics of wealth is given by the following 
budget constraint:

By Itô’s lemma and the budget constraint, we have 
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, 

To maximize E[lnWT], the Kelly strategy selects              
   , 

which maximizes 

Now suppose there is an alternative fxed mix strategy: 
           .  We can state the wealth under the two strategies at 
time T as: 

where Z~N(0,1).
 

Te probability that the Kelly strategy will outperform the 

alternative strategy at time T:
 

            

 
where Φ is the cumulative distribution function (CDF) of a 
standard normal random variable. 

Because xK is the unique solution to max       , we have  we have 
                 . 

and                      .Terefore,                            

Appendix 5: Estimation of EMDD 

Suppose the value of a portfolio follows a geometric Brownian 
motion with parameters          : 

Defne EMDD as the expected percentage loss (approximated by 
the absolute log return) from the peak to the trough over a 
specifc time horizon T. Based on Magdon-Ismail et al. (2004), 
we have 

where Qp and Qn are functions tabulated in that paper. 

If the portfolio follows the wealth path resulting from a CRRA 
utility maximization problem, as in Appendix 2 (Case 1), 
               

  and         
  , where  where r is the risk-free 

rate, s is the instantaneous Sh arpe ratio of the risky asset, and γ 
is the risk aversion parameter. Terefore, we can estimate 
EMDD for optimal strategies under diferent risk aversion 
parameters by plugging in the model assumptions. 

Appendix 6: Relationship between mean log return and mean 
arithmetic return 

Taking the second-order Taylor expansion of ln (1+r) around 
E(r), we have 

Taking expectations on both sides, we have 

If E(r) is small (such as when the time interval is short), 
ln (1+E(r))≈E(r). Terefore,               

       . 
     

           

It says an asset’s expected log return is lower than its expected 
arithmetic return by approximately half of the variance of the 
arithmetic return. Tis relationship holds exactly in continuous 
time when the asset price follows a geometric Brownian motion: 

By Itô’s lemma, 

Terefore, 
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1 For curious readers, this specifc functional form serves two purposes. Apart from allowing for cleaner expressions for the frst-order condition and the solution, it ensures that the risk aversion parameter in the 
mean-variance utility coincides with the risk aversion parameters in some other popular utility functions under certain conditions. Appendix 1 provides a detailed example. 

2 Continuous rebalancing is the limiting case of small rebalancing intervals. It makes it easy or possible to derive analytical solutions that provide economic insights diffcult to obtain from numerical solutions 
and allows us to distinguish general properties of the solutions from those relying on specifc parameter values. Continuous rebalancing can be a good approximation for frequently rebalanced portfolios, 
especially when the investment horizon is long. 

3 To see why the CRRA utility is reduced to a log utility when γ=1, frst note that                      . Then we can apply L’Hôpital’s rule and take derivatives of both the numerator and the denominator: 
           

4 This idea was shared later by other researchers and practitioners (see, for example, Ziemba and Ziemba 2007).
 

5 Roncalli (2014) showed risk parity for factors is equivalent to risk budgeting for asset classes with a specifc risk budget profle.
 

6 See Frazzini and Pedersen (2014) for more details.
 

7 The 60/40 mix appealed to many investors for decades because of its simplicity and the risk/return trade-off it delivered. With the fxed target weights, long-term investors do not have to time the market.
 
The regular rebalancing to the fxed weight may also potentially contribute to the performance of the strategy in the presence of mean reversion for asset returns. 

8 Another caveat is that we use volatility as the measure of risk here, and it is limited in capturing any tail risk beyond what is implied by normal distributions. 
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